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Abstract

Tracking dialogue states to better interpret
user goals and feed downstream policy learn-
ing is a bottleneck in dialogue management.
Common practice has been to treat it as a
problem of classifying dialogue content into
a set of pre-defined slot-value pairs, or gen-
erating values for different slots given the
dialogue history. Both have limitations on
considering dependencies that occur on dia-
logues, and are lacking of reasoning capabil-
ities. This paper proposes to track dialogue
states gradually with reasoning over dialogue
turns with the help of the back-end data. Em-
pirical results demonstrate that our method
outperforms the state-of-the-art methods in
terms of joint belief accuracy for MultiWOZ
2.1, a large-scale human-human dialogue
dataset across multiple domains.

1 Introduction

Dialogue State Tracking (DST) usually works
as a core component to monitor the user’s
intentional states (or belief states) and is cru-
cial for appropriate dialogue management. A
state in DST typically consists of a set of
dialogue acts and slot value pairs. Consider
the task of restaurant reservation as shown in
Figure 1. In each turn, the user may inform
the agent of particular goals (e.g. single one as
inform(food=Indian) or composed one as
inform(area=center,food=Jamaican)).
Such goals given during a turn are referred as turn
belief. The joint belief is the set of accumulated
turn goals updated until the current turn, which
summarizes the information needed to successfully
maintain and finish the dialogue.

Traditionally, dialogue system is supported by
a domain ontology which defines a collection of
slots and the values that each slot can take. The
aim of DST is to identify good features or patterns,
and map to entries such as specific slot-value pairs

I am looking for a place to dine in the centre
that serves Jamaican food.
inform(area=center, food=Jamaican)

I am sorry, I am not finding any place that
serves Jamaican food in the centre of town.
Would you like to try another area?
That is fine, how about an expensive place that
serves Indian food?
inform(food=Indian, price=expensive)

Usr:

Usr:

Usr:

Sys:

Sys:

Last joint belief:
inform(area=center, food=Indian, price=expensive)

Current joint belief:
inform(area=center, food=Indian, price=cheap)

I am sorry, but there are no such restaurants.
Would you like to broaden your search?
Any cheap place then?
inform(price=cheap)

center
Indian

JamaicanGolden Curry

Curry Prince

expensive

moderate

Figure 1: An example dialogue for illustration. Turn be-
lief labels are provided based on turn information, while
the joint belief captures most updated user intention up
to the current turn.

in the ontology. It is often treated as a classifica-
tion problem. Therefore, most efforts center on (1)
finding salient features: from hand-crafted features
(Wang and Lemon, 2013; Sun et al., 2014a), seman-
tic dictionaries (Henderson et al., 2014b; Rastogi
et al., 2017) to neural network extracted features
(Mrkšić et al., 2017); or (2) investigating effec-
tive mappings: from rule-based models (Sun et al.,
2014b), generative models (Thomson and Young,
2010; Williams and Young, 2007) to discriminative
ones (Lee and Eskenazi, 2013; Ren et al., 2018; Xie
et al., 2018). On the other hand, some researchers
attack these methods’ over-dependence on domain
ontology. They perform DST in absence of a com-
prehensive domain ontology and handle unknown
slot values by generating words from dialogue his-
tory or knowledge source (Rastogi et al., 2017; Xu
and Hu, 2018; Wu et al., 2019).

However, the critical problem of modeling the
dependencies and reasoning over dialogue history
is not well researched. Many existing methods
work on turn level only, which takes in the current



turn utterance and output the corresponding turn
belief (Henderson et al., 2014b; Zilka and Jurci-
cek, 2015; Rastogi et al., 2017; Xu and Hu, 2018).
Compared to joint belief, the resulting turn belief
only reflects single turn information, and thus is
of less practical use. Therefore, more recent ef-
forts target at the joint belief that summarizes the
dialogue history. Generally speaking, they accu-
mulate turn beliefs by rules (Mrkšić et al., 2017;
Zhong et al., 2018; Nouri and Hosseini-Asl, 2018)
or model information across turns via various re-
current neural networks (RNN) (Wen et al., 2017;
Ramadan et al., 2018). Although these RNN based
methods model dialogue in turn by turn style, they
usually feed the whole turn utterance directly to the
RNN, which contains a large portion of noise, and
result in unsatisfactory performance (Liao et al.,
2018; Zhang et al., 2019b). More recently, there
are works that directly merge fixed window of past
turns (Perez and Liu, 2017; Wu et al., 2019) as
new input and achieve state-of-the-art performance
(Wu et al., 2019). Nonetheless, their capability of
modeling long-range dependencies and doing rea-
soning in the interactive dialogue process is rather
limited. For example, (Wu et al., 2019) performs
gated copy to generate slot values from dialogue
history. Although certain turns of utterances are
exposed to the model, since the interactive signals
are lost when concatenating turns together, it fails
to do in-depth reasoning over turns.

Very recently, there are works starting to work
in turn-by-turn style with pre-trained models. Gen-
erally speaking, such methods take the previous
turn’s belief state and the current turn utterances
as input to generate new dialogue state (Chao and
Lane, 2019; Kim et al., 2020; Chen et al., 2020).
However, there exists a long ignored fact that as
an agent’s central component, the state tracker not
only receives dialogue history but also observes
the back-end database or knowledge base. Such
information source provides valuable hints for it to
reason about user goals and update belief states. It
is therefore natural to construct a bipartite graph
based on the database where the entities and entity
attributes are the two groups of nodes; with edges
connecting them to express attribute belonging rela-
tion. As the example in Figure 1, the database does
not contain restaurant entity serving Jamaican food
and located in center area. Thus there would be no
two-hop path between these two nodes. Existing
methods like (Wu et al., 2019) have to understand it

via system utterances, while a DST reasoning over
database would easily obtain such clues explicitly.

In this paper, we propose to do reasoning over
turns and reasoning over database in Dialogue State
Tracking (ReDST) for task-oriented systems. For
reasoning over turns, we model dialogue state track-
ing as a recursive process in which the current joint
belief relies on the generated current turn belief and
last joint belief. Motivated by the limited length
of single turn utterance and the good performance
of pre-trained BERT (Devlin et al., 2019), we for-
malize the turn belief prediction as a token and
sequence classification problem. It follows a mul-
titask learning setting with augmented utterance
inputs. To integrate the last turn belief results, an
incremental inference module is applied for more
robust belief updates. For reasoning over database,
we abstract the back-end database as a bipartite
graph, and propagate extracted beliefs over the
graph to obtain more realistic dialogue states. Con-
tributions are summarized as:

• We propose to rethink the dialogue state track-
ing problem for task-oriented agents, pointing
out the need for proper reasoning over turns
and reasoning over back-end data.

• We represent the database into a bipartite
graph and perform belief propagation on it,
which enables belief tracker to gain insight
on potential candidates and detect conflicting
requirements along the conversation course.

• With the help from pre-trained Transformer
models working on augmented short utterance
for achieving more accurate turn beliefs, we
incrementally infer joint belief via reasoning
in a turn by turn style and outperform state-of-
the-art methods by a large margin.

2 Related Work

2.1 Dialogue State Tracking

A plethora of research has been focused on DST.
We briefly discuss them in general chronological
order. At early stage, traditional dialogue state
trackers combine semantic information extracted
by Language Understanding (LU) modules to do
DST (Williams and Young, 2007; Williams, 2014).
Such trackers accumulate errors from the LU part
and possibly suffer from information loss of dia-
logue context. Subsequent word-based (Henderson
et al., 2014b; Zilka and Jurcicek, 2015) trackers



thus forgo the LU part and directly infer states us-
ing dialogue history. Hand-crafted semantic dictio-
naries are utilized to hold all key terms, rephrases
and alternative mentions to delexicalize for achiev-
ing generalization (Rastogi et al., 2017).

Recently, most approaches for dialogue state
tracking rely on deep learning models (Wen et al.,
2017; Ramadan et al., 2018). Mrkšić et al. (2017)
leveraged pre-trained word vectors to resolve lex-
ical/morphological ambiguity. As it treats slots
independently that might result in missing relations
among slots (Ouyang et al., 2020), Zhong et al.
(2018) proposed global modules to share param-
eters between estimators for different slots. Sim-
ilarly, Nouri and Hosseini-Asl (2018) used only
one recurrent network with global conditioning to
reduce latency while preserving performance. In
general, these methods represent the dialogue state
as a distribution over all candidate slot values that
are defined in the ontology. It is often solved as a
classification or matching problem. However, these
methods rely heavily on a comprehensive ontology,
which often might not be available. Therefore, Ras-
togi et al. (2017) introduced a sophisticated can-
didate generation strategy, while (Perez and Liu,
2017) followed the general paradigm of machine
reading and proposed to solve it using an end-to-
end memory network. Xu and Hu (2018) utilized
the pointer network to extract slot values from ut-
terances, while Wu et al. (2019) integrated copy
mechanism to generate slot values.

However, these methods tend to largely ignore
the dialogue logic and dependencies. For exam-
ple, inter-utterance information and correlations
between slot values have been shown to be chal-
lenging, let alone the frequent goal shifting of users.
Consequently, reasoning over turns is sensible. We
first aim to improve the turn belief prediction, then
model the joint belief prediction as an updating pro-
cess. Very recently, we see such design leveraged
by several works. For example, Chao and Lane
(2019) leverages BERT model to extract slot values
for each turn, then employs a rule-based update
mechanism to track dialogue states across turns.
Ren et al. (2019) encodes previous dialogue state
and current turn utterances using Bi-LSTM, then hi-
erarchically decodes domains, slots and values one
after another. At the same time, Kim et al. (2020)
encodes these inputs with BERT model while pre-
dicts operation gates and generates possible values.
Still, such methods largely ignore the fact that as

an agent, it has access to the back-end data struc-
ture which can be leveraged to further improve the
performance of DST.

2.2 Incremental Reasoning

The ability to do reasoning over the dialogue his-
tory is essential for dialogue state trackers. At the
turn level, we aim to extract more accurate slot
values from user utterance with the help of contex-
tualized semantic inference. Contextualized repre-
sentation learning in NLP dates back to (Collobert
and Weston, 2008) but has had a resurgence in the
recent year. Contextualized word vectors were pre-
trained using machine translation data and trans-
ferred to text classification and QA tasks (McCann
et al., 2017). Most recently, BERT (Devlin et al.,
2019) employed Transformer layers (Vaswani et al.,
2017) with a masked language modeling objective
and achieved superior performance across various
tasks. In DST, we also observe a wide adoption of
such models (Shan et al., 2020; Liao et al., 2021).
For example, Kim et al. (2020); Heck et al. (2020)
adopted the pre-trained BERT as base network.
Hosseini-Asl et al. (2020) applied the pre-trained
GPT-2 (Alec et al., 2019) model as the base net-
work for dialogue state tracking.

At dialogue context level, since we perform rea-
soning via belief propagation through graph, our
work is also related to a wide range of graph rea-
soning studies. As a relatively early work, the page-
ranking algorithm (Page et al., 1999) used a random
walk with restart mechanism to perform multi-hop
reasoning. Almost at the same time, Loopy Belief
Propagation (Murphy et al., 1999) was proposed
to calculate the approximate marginal probabilities
of vertices in a graph based on partial informa-
tion. In recent years, research on graph reason-
ing has moved to learn symbolic inference rules
from relational paths in the KG (Xiong et al., 2017;
Das et al., 2017). Under these settings, a large
number of entities and many types of relationships
are usually involved. In DST, Chen et al. (2020)
leveraged schema graphs containing slot relations,
but their method heavily relied on a complete slot
ontology. Zhou and Small (2019) incorporated a
dynamically-evolving knowledge graph to explic-
itly learn relationships slots. In our work, only the
attribute belonging relations are captured, and the
constructed graph is simply a bipartite graph. We
thus resort to heuristic belief propagation on the bi-
partite graph for reasoning. Further exploring more
advanced models are treated as our future work.
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Figure 2: The architecture of the proposed ReDST model, which comprises (a) a turn belief generator, (b) a bipartite
belief propagator, and (c) an incremental belief generator. The turn belief generator will predict values for domain
slot pairs. Together with the last joint belief, the beliefs will be aggregated via the bipartite belief propagator based
on the database structure. Then the incremental belief generator infers the final joint belief.

3 ReDST Model

The proposed ReDST model in Figure 2 consists
of three components: a turn belief generator, a bi-
partite graph belief propagator, and an incremental
belief generator. Instead of predicting the joint
belief directly from dialogue history, we perform
two-stage inference: it first obtains turn belief from
augmented turn utterance via transformer models.
Then, it reasons over turn belief and last joint be-
lief with the help of the bipartite graph propagation
results. Based on this, it incrementally infers the
final joint belief.

To facilitate the model description in detail, we
first introduce our mathematical notations here. We
define X = {(U1, R1), · · · (UT , RT )} as the set of
user utterance and system response pairs in T turns
of dialogue, and B = {B1, · · · , BT } as the joint
belief states at each turn. While Bt summarizes the
dialogue history up to the current turn t, we also
model the turn belief Qt that corresponds to the
belief state of a specific turn (Ut, Rt), and denote
Dt as the domain of this specific turn. Following
(Wu et al., 2019), we design our state tracker to
handle multiple tasks. Thus, each Bt or Qt con-
sists of tuples like (domain, slot, value). Suppose
there are K different (domain, slot) pairs in total,
we denote Yk as the true slot value for the k-th
(domain, slot) pair.

3.1 BERT-based Turn Belief Generator

Denoting Xt = (Ut, Rt) as the t-th turn utterance,
the goal of turn belief generator is to predict ac-

curate state for this specific utterance. Although
the dialogue history X can accumulate in arbi-
trary length, the turn utterance Xt is often rela-
tively short in oftentimes. To utilize contextualized
representation for extracting beliefs and enjoy the
good performance of pre-trained encoders, we fine-
tune BERT as our base network while attaching
the sequence classification and token classification
layers in a multitask learning setting. The token
classification task extracts specific slot value spans.
The sequence classification task decides which do-
main the turn is talking about and whether a spe-
cific (domain, slot) pair takes the gate value like
yes, no, doncare, none, or generate from token
classification etc.

The model architecture of BERT is a multi-
layer bidirectional Transformer encoder based
on the original Transformer model (Vaswani
et al., 2017). The input representation is a
concatenation of WordPiece embeddings (Wu
et al., 2016), positional embeddings, and the
segment embedding. As we need to predict
the values for each (domain, slot) pair, we
augment the input sequence as follows. Sup-
pose we have the original utterance as Xt =
x1, · · · , xN , the augmented utterance is then X ′t
= [CLS], domain, slot, [SEP], x1, · · · , xN , [SEP].
The specific (domain, slot) works as queries to
extract the answer span. We denote the outputs of
BERT as H = h1, ...,hN+5

1. The BERT model

1For ease of illustration, we ignore the WordPiece separa-
tion effect on token numbers.



is pre-trained with two strategies on large-scale
unlabeled text, i.e., masked language model and
next sentence prediction, which provide a powerful
context-dependent sentence representation.

We use the hidden state h1 corresponding to
[CLS] as the aggregated sequence representation
to do the domain dt and gate zt classification:

dt = softmax(Wdm · (h1)
T + bdm),

zt = softmax(Wgt · (h1)
T + bgt)

where Wdm is trainable weight matrix and bdm

is the bias for domain classification. And Wgt is
trainable weight matrix and bgt is the bias for gate
classification.

For token classification, we feed the hidden
states of other tokens h2, · · · ,hN+5 into a soft-
max layer to classify over the token labels S, I,O,
[SEP] by

yn = softmax(Wtc · (hn)
T + btc), (1)

where Wtc is trainable weight matrix and btc is the
bias for token classification.

To jointly model the sequence classification and
token classification, we optimize their loss together.
For the former one, the cross-entropy loss Lsc is
computed between the predicted d, z and the true
one-hot label d̂, ẑ,

Lsc = −log(d · (d̂)T )− log(z · (ẑ)T ). (2)

For the later, we apply another cross-entropy loss
Ltc between each token label in the input sequence.

Ltc = −
N+5∑
n=2

log(yn · (ŷn)T ). (3)

We optimize the turn belief generator via a
weighted sum of these two loss functions as be-
low over all training samples:

Lturn = αLsc + βLtc. (4)

3.1.1 Filter for Improving Efficiency
As in turn belief, most of the slots will get the
value not mentioned. To enhance the efficiency of
our model, we further design a gate mechanism
similar to (Wu et al., 2019) to filter out such slots
first, for which we can skip the generation process
and predict the value none directly. We apply the
separate training objective as the cross entropy loss

computed between the predicted slot gate pfilter
s

and the true one-hot label qfilter
s as below:

Lfilter = −log(pfilter
s · (qfilter

s )T ),

where for prediction, we calculate HXt =
fBERT (Xt) as contextualized word representa-
tions for turn utterance, and then apply query atten-
tion to classify whether the slot should be filtered,

η = Softmax(HXt · (qs)
T ),

pfilter
s = Softmax(Wfilter · (ηT ·HXt)

T ).

Wfilter is the weight matrix and qs is the [CLS]
position’s output from a BERT encoder for the
domain-slot query.

3.2 Joint Belief Reasoning
Now we can predict the turn level belief state for
each turn. Intuitively, we can directly apply our
turn belief generator on concatenated dialogue his-
tory to obtain the joint belief as in (Wu et al., 2019).
However, it is hardly an optimal practice. First of
all, treating all utterances as a long sequence will
lose the iterative character of dialogue, thus result-
ing in information loss. Secondly, current models
like recurrent networks or Transformers are known
for not being able to model the long-range depen-
dencies well. Long sequences introduce hardship
to the modeling as well as the computational com-
plexity of Transformers. The WordPiece separation
operation makes sequences even longer. Therefore,
we simulate the dialogue procedure as a recursive
process where current joint belief Bt relies on last
joint belief Bt−1 and the current turn belief Qt.
Generally speaking, we use Bt−1 and Qt to per-
form belief propagation on the Bipartite graph con-
structed based on the back-end database to obtain
credibility score for each slot value pairs. Then, we
do incremental belief reasoning over the recursive
process using different methods.

3.2.1 Bipartite Graph Belief Propagator
As the central component for dialogue systems, the
dialogue state tracker has access to the back-end
database most of the time. In the course of the
task-oriented dialogue, the user and agent interact
with each other to reach the same stage of infor-
mation awareness regarding a specific task. The
user expresses requirements that, many times, are
hard to meet. The agent resorts to the back-end
database and responds accordingly. Then the user
would adjust his/her requirements to get the task



done. In most existing DSTs, the tracker has to
infer such adjustment requirements from dialogue
history. With reasoning over the agent’s database,
we expect to harvest more accurate clues explicitly
for belief update.

Consequently, we abstract the database as a bi-
partite graph G = (V,E), where vertices are parti-
tioned into two groups: the entity set Vent and at-
tribute set Vattr, where V = Vent∪Vattr and Vent∩
Vattr = φ. The entities within Vent and Vattr are
totally disconnected. Edges link two vertices from
each of Vent and Vattr, representing the attribute
belonging relationship. During each turn, we first
map the predicted Qt and last joint belief Bt−1 to
belief distributions over the graph via the function
g(·). Here we apply fuzzy match and calculate the
similarity with a threshold ε to realize g(·). We
use BERT tokenizer to tokenize both dialogue and
database entries. The mapping is done based on a
pre-set threshold on the token level overlap ratio.
For example, the generated ‘cambridge punt ##er’
will be mapped to the database entry ‘the cam-
bridge punt ##er’ when their overlap ratio is larger
than ε. In our experiment, we find that approxi-
mately 60.5% of entity names and 12.2% other slot
values can be mapped 2. This mapping operation
actually helps to correct some minor errors made
in span extraction or generation.

After the mapping of beliefs to the database bi-
partite graph via g(·), we start to do belief propa-
gation over the graph. Generally speaking, there
are two kinds of belief propagation in the bipartite
graph. The first is from Vent to Vattr. It simulates
the situation when a venue entity is mentioned,
its attributes will be activated. For example, af-
ter a restaurant is recommended, a nearby hotel
will have the same location value with it. The
second one is from Vattr to Vent. This simulates
the situation when an attribute is mentioned, all
entities having this attribute will also receive the
propagated beliefs. If an entity gets more attributes
mentioned, it will receive more propagated beliefs.
Suppose the propagation result is ct for the current
turn t, it can be viewed as the credibility scores of
the state values after reasoning over the database
graph. We reason over this set of entries via doing
belief propagation in the bipartite graph to obtain

2Over half of the slot values are time, people, stay, day etc.
There are no such nodes in the bipartite graph but we keep
these slot values’ existence in the belief vector.

the certainty scores for them as below:

ct = γ · g(Bt−1) + η · g(Qt) · (I + Wadj), (5)

where γ is a hyper-parameter for modeling the cred-
ibility decay, because newly provided slot values
usually reflect more updated user intention. η ad-
justs the effect of propagated beliefs. Wadj is the
adjacency matrix of the bipartite graph. Note that
the belief propagation method is rather simple but
effective. We tried more advanced methods such
as loopy belief propagation (Murphy et al., 1999).
However, we did not see obvious performance gain
which might be due to the relatively small bipartite
graph size (273 nodes in total). Also, we suspect
that graph reasoning might be more helpful for
down-stream tasks such as action prediction. We
will explore further in future.

3.2.2 Incremental Belief Generator
With the credibility scores ct obtained from the
belief propagator, we now incrementally infer the
current joint belief Bt. Mathematically, we have

Bt = f(Qt, Bt−1, ct). (6)

The function f integrates evidence from the turn
belief, last joint belief, and the propagated cred-
ibility scores. There are wide variety of models
that can be applied. We may leverage the straight-
forward Multi-Layer Perceptron (MLP) to model
the interactions between these beliefs (He et al.,
2017) deeply. Due to the sequential nature of the
belief generator, we can also apply GRU cells to
predict the beliefs turn by turn (Cho et al., 2014).
Intuitively, given these remaining and new belief
entries as well as credibility scores, the essential
task here is to reason out what entries to keep, up-
date or delete. Therefore, we make use of these
information to carry out the operation classification
task. There are three operations keep, update and
delete to choose from for each domain slot. For
the GRU case, the detailed equation for operation
classification is as below:

ht = GRU(W · [g(Qt), ct], ht−1)

opk = softmax(Wopk · (ht)
T + bopk),

where W · [g(Qt), ct] and ht−1 are the inputs to the
GRU cell. [, ] denotes vector concatenation. Wopk

and bopk are the weight matrix and bias vector for
the corresponding k-th (domain, slot) pair. After
the operation op in the current turn t is predicted,
we obtain the corresponding current joint belief Bt

via performing corresponding operations.



4 Experiments

4.1 Dataset

We carry out experiments on MultiWOZ 2.1 (Eric
et al., 2019). It is a multi-domain dialogue dataset
spanning seven distinct domains and containing
over 10,000 dialogues. As compared to MultiWOZ
2.0, it fixed substantial noisy dialogue state annota-
tions and dialogue utterances that could negatively
impact the performance of state-tracking models.
In MultiWOZ 2.1, there are 30 domain-slot pairs
and over 4,500 possible values, which is different
from existing standard datasets like WOZ (Wen
et al., 2017) and DSTC2 (Henderson et al., 2014a),
which have less than ten slots and only a few hun-
dred values. We follow the original training, vali-
dation, and testing split and directly use the DST
labels. Since the hospital and police domain have
very few dialogues (10% compared to others) and
only appear in the training set, we only use the
other five domains in our experiment.

4.2 Settings

Training Details Our model is trained in a two-
stage style. We first train the turn belief generator
using the Adam optimizer with a batch size of 32.
We adopt the bert-base-uncased version of BERT
and initialize the learning rate for fine-tuning as
3e-5. The α and β in Equation 4 are set to 0.05
and 1.0 respectively. We use the average of the
last four hidden layer outputs of BERT as the final
representation of each token.

During the later reasoning stage, regarding incre-
mental belief reasoning, we use a fully connected
two-layer feed-forward neural network with ReLU
activation for MLP. The hidden size is set to 500,
and the learning rate is initialized as 0.002. For
GRU, we set the learning rate as 0.005. We pre-
process turn utterances to alleviate the problem of
ground truth absence, e.g., formalize time values
into standard forms. Similar to (Heck et al., 2020),
we also make use of the system acts to enrich the
system utterances.

Evaluation Metrics Similar to (Wu et al., 2019),
we adopt the evaluation metric – joint goal accu-
racy to evaluate the performance. It is a relatively
strict elevation standard. The joint goal accuracy
compares the predicted belief states to the ground
truth Bt at each turn t. The joint accuracy is 1.0
if and only if all (domain, slot, value) triplets are
predicted correctly at each turn, otherwise 0.

Baselines We denote the two versions of ReDST
with different incremental reasoning modules as
ReDST MLP , and ReDST GRU . They are com-
pared with the following baselines.

DST Reader (Gao et al., 2019): It treats DST as a
reading comprehension problem. Given the history,
it learns to extract slot values as spans.
HyST (Goel et al., 2019): It combines a hierarchi-
cal encoder in a fixed vocabulary system with an
open vocabulary n-gram copy-based system.
TRADE (Wu et al., 2019): It concatenates
the whole dialogue history as input and uses a
generative state tracker with a copy mechanism to
generate value for each slot separately.
DST-Picklist (Zhang et al., 2019a): Given the
whole dialogue history as input, it uses two
BERT-based encoders and takes a hybrid approach
of predefined ontology-based DST and open
vocabulary-based DST. It defines picklist-based
slots for classification and span-based slots for
span extraction like DSTRead (Gao et al., 2019).
SOM (Kim et al., 2020): It works in turn-by-turn
style and considers state as an explicit fixed-sized
memory, and adopts a selectively overwriting
mechanism for generating values with copy.
SST (Chen et al., 2020): It leverages a graph
attention matching network to fuse information
from utterances and schema graphs. A reccurent
graph attention network controls state updating. It
relies on a predefined ontology.

4.3 DST Results

We first compare our model with the state-of-the-
art methods. As shown in Table 1, we observe
that our method outperforms all the other baselines.
For example, in terms of joint accuracy which is
a rather strict metric, ReDST GRU improves the
performance by 46.2%, 17.4%, and 1.3% as com-
pared to open-vocabulary based methods: the DST
Reader, TRADE, and SOM, respectively. Based
on results in Table 1, the methods such as DST-
Picklist and SST perform better than our method.
However, they rely heavily on a predefined ontol-
ogy. In such methods, the value candidates for each
slot to choose from are fixed already. They cannot
handle unknown slot values, which largely limits
their application in real-life scenarios.

We observe that a large portion of baselines
work on relatively long window-sized dialogue
history. FJST directly encodes the raw dialogue



Model Joint Acc

predefined
ontology

FJST 0.378
HJST 0.356
HyST 0.381

DST-Picklist 0.533
SST 0.552

open-
vocabulary

DST Reader 0.364
TRADE 0.453

TRADE w/o gate 0.411
SOM 0.525

ReDST MLP 0.511
ReDST GRU 0.532

Table 1: The multi-domain DST evaluation results on
the MultiWOZ 2.1 dataset. The ReDST GRU method
achieves the highest joint accuracy.

Model T-3 T-2 T-1 T
TRADE 0.411 0.339 0.269 0.282

ReDST GRU 0.487 0.440 0.391 0.377

Table 2: The last four turns’ joint accuracy of TRADE
and proposed ReDST. (T refers to the last turn of each
dialogue session.)

history using recurrent neural networks. In con-
trast, HJST first encodes turn utterance to vectors
using a word-level RNN, and then encodes the
whole history to vectors using a context level RNN.
However, the lower performance of HJST demon-
strates its inefficiency in learning useful features
in this task. Based on HJST, HyST manages to
achieve better performance by further integrating a
copy-based module. Still, the performance is lower
than TRADE, which encodes the raw concatenated
whole dialogue history, generates or copies slot val-
ues with extra slot gates. Generally speaking, these
baselines are based on recurrent neural networks
for encoding dialogue history. Since the interac-
tions between user and agent can be arbitrarily long
and recurrent neural networks are not effective in
modeling long-range dependencies, they might not
be a good choice to model the dialogue for DST.
On the contrary, single turn utterances usually are
short and contain relatively simple information as
compared to complicated dialogue history. It is
thus better to generate belief in turn level and then
integrate them via reasoning. According to the com-
parisons of baselines, the superior performance of
SST, SOM and ReDSTs validate this design.

Moreover, we also tested the performance of
TRADE without the slot gate. The performance
drops dramatically – from 0.453 to 0.411 in terms
of joint accuracy. We suspect that this is due to
lengthy dialogue history, where the decoder and

copy mechanism start to lose focus. It might gen-
erate some value that appears in dialogue history
but is not the ground truth. Therefore, the slot gate
is used to decide which slot value should be taken,
which resembles the inference in some sense. To
validate this, we feed the single turn utterances
to TRADE and generate the turn beliefs as out-
put. Interestingly, we find that it performs sim-
ilar with gate or without it, which validates our
guess. However, such resembled inference is not
enough. When the dialogue history becomes long,
the gating mechanism will fall short of hands. Ac-
cordingly, we report the results of TRADE and
ReDST GRU on the last four turns of dialogues in
Table 2. The better performance of ReDST GRU

further validates the importance of reasoning over
turns. Usually, as the interactive dialogue goes on,
users might frequently adjust their goals, which
requires special consideration. Since turn utterance
is relatively more straightforward and dialogue is
turn by turn in nature, doing DST turn by turn is a
useful and practical design.

4.4 Component Analysis

Since our model makes use of the advanced BERT
structure to learn the contextualized representation,
we first test how much contribution the BERT has
made. Therefore, we carried out study on turn be-
lief generator and compare it with SOM and the
BiLSTM baseline TRADE on the single turn ut-
terance. As shown in Table 3, we observe that the
BERT based SOM and ReDST indeed performs
better than single turn TRADE. This is due to
the usage of pre-trained BERT in learning better-
contextualized features. In the multitask setting
of our design, both the token classification and se-
quence classification tasks benefit from BERT’s
strength. Moreover, we notice that when doing
the single turn setting, the system response usually
depends on certain information mentioned in the
former turn user utterance. Therefore, we concate-
nate the former turn utterance to each current single
turn as the input for BERT. Under this setting, we
achieved a large boost in performance regarding
joint accuracy as in Table 3. It provides an excellent
base for the later stage inferences.

We also tested the effect of reasoning over the
database. For a clear comparison, we ignore the
evidence obtained via bipartite graph belief prop-
agation while keeping other settings the same. To
show it more clear, we re-organize the results in



Model Joint Acc
TRADE 0.697

SOM 0.799
ReDST 0.808

Table 3: The turn belief generation results of TRADE,
SOM and proposed ReDST.

Setting w BP w/o BP
ReDST MLP 0.511 0.507
ReDST GRU 0.532 0.530

Table 4: The joint accuracy results for ReDST methods
with or without bipartite graph reasoning.

Table 4. It can be observed that both ReDST MLP

and ReDST GRU gain a bit from belief propagation.
It validates the usefulness of database reasoning.
However, since the graph is rather small, the per-
formance improvement is rather limited. Similar
patterns are found in (Chen et al., 2020) and we sus-
pect that it will be more helpful with larger database
structure. Also, we will further explore its usage in
down-stream tasks such as action prediction.

For different incremental reasoning modules, the
results are also shown in Table 1. We find that
ReDST GRU performs better. However, we notice
that simply accumulating turn belief as in (Zhong
et al., 2018) performs very well. The rule is to
add newly predicted turn belief entries to the last
joint belief. When different values for a slot appear,
only keep the new one. Although this rule seems
simple, it actually reflects the dialogue’s interactive
and updating nature. We tried to directly apply this
rule on the ground truth turn belief to generate joint
belief. It results in 0.963 joint accuracy. However,
a critical problem of such accumulation rule is that
when the generated turn belief gets wrong, it will
not be able to add missing entry or delete wrong en-
try. By applying GRU in ReDST GRU , it manages
to modify a bit with the help of database evidence.
Still, there are large space for more powerful rea-
soning models to address this error accumulation
issue. We will further investigate in this direction.

4.5 Error Analysis

We also provide error analysis regarding each slot
for ReDST GRU in Figure 3. To make it more clear,
we also list the results of SOM for comparison. We
observe that a large portion of the improvements for
our method are on name entities and time related
slots. As mentioned in (Wu et al., 2019), name
slots in the attraction, restaurant, and hotel do-
mains have the highest error rates. It is partly be-

Figure 3: Slot error rate on the test set. The error rate
for name slots on restaurant, hotel and attraction
domain drops 4.2% on average.

cause these slots have a relatively large number
of possible values that are hard to recognize. In
ReDST GRU , we map beliefs into bipartite graph
constructed via database and do belief propagation
on it. This helps to improve the accuracy on name
slots. Also, the classification gate design helps to
improve performance on Yes/No slots. We also ob-
serve that the performance for taxi destination
becomes worse. This is due to value co-reference
phenomenon where user might just mention ‘taxi
to the hotel’ to refer to the hotel name mentioned
earlier. These findings are interesting and we will
explore further.

5 Conclusion

We rethink DST from the angle of agent and point
out the urgent need for in-depth reasoning other
than being obsessed with generating values from
history text as a whole. We demonstrated the im-
portance of doing reasoning over turns and over
the database. In detail, we fine-tuned pre-trained
BERT for more accurate turn level belief gener-
ation while doing belief propagation in bipartite
graph to harvest more clues. Experiments on a
large-scale multi-domain dataset demonstrate the
superior performance of the proposed method. In
the future, we will explore more advanced algo-
rithms for performing reasoning over turns and on
graphs for generating more accurate summarization
of user intention.
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