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ABSTRACT
Although conversational search has become a hot topic in both dia-
logue research and IR community, the real breakthrough has been
limited by the scale and quality of datasets available. To address this
fundamental obstacle, we introduce the Multimodal Multi-domain
Conversational dataset (MMConv), a fully annotated collection of
human-to-human role-playing dialogues spanning over multiple
domains and tasks. The contribution is two-fold. First, beyond the
task-oriented multimodal dialogues among user and agent pairs,
dialogues are fully annotated with dialogue belief states and dia-
logue acts. More importantly, we create a relatively comprehen-
sive environment for conducting multimodal conversational search
with real user settings, structured venue database, annotated im-
age repository as well as crowd-sourced knowledge database. A
detailed description of the data collection procedure along with a
summary of data structure and analysis is provided. Second, a set
of benchmark results for dialogue state tracking, conversational
recommendation, response generation as well as a unified model for
multiple tasks are reported. We adopt the state-of-the-art methods
for these tasks respectively to demonstrate the usability of the data,
discuss limitations of current methods and set baselines for future
studies.
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• Computing methodologies → Intelligent agents; Artificial
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1 INTRODUCTION
The ever-increasing variety of information and products leads to in-
formation overload problem. Search and recommendation systems
are developed to help people sift through information easier and
make better decisions. The information search paradigm has been
evolving from mostly unidirectional and text-based to interactive
and multimodal [39]. Recently, there is also a growing interest in all
matters conversational. By incorporating multimodal conversation,
it offers users a natural way to query the system by combining
information in various modalities. It also helps to tackle the basic
asymmetric problem in search by injecting conversation to resolve
ambiguities in search and recommendation.

However, the evolution from traditional IR to conversational
IR faces many challenges. Among them are the need to develop
new models and framework to: handle the ambiguity when under-
standing human language; model multimodal context and history,
integrate domain knowledge and user models in decision-making;
conduct interactive IR and QA, develop intervention strategy to in-
corporate conversation into search; and integrate conversation with
third-party services such as recommendation, database search and
Web search. Moreover, there are the issues of resources, method-
ologies and biases in evaluating (multi-turn) conversational search
systems. These difficulties have pointed to the possible solution
of using statistical framework and machine learning techniques.
Therefore, inspired from the progress in dialogue research commu-
nity, one may adapt and develop similar components, such as natu-
ral language understanding, dialogue management, language gen-
eration, and even end-to-end conversation modelling etc. However,
the real breakthrough has largely been blocked by a comprehensive
multimodal conversational search environment for facilitating the
corresponding research tasks.

To drive the progress of building conversational search and rec-
ommendation systems using data-driven approaches, there are
some corpora proposed recently. In general, existing corpora are
either machine synthesized or collected via crowd-sourcing online.
For example, [8, 32, 42] heavily rely on existing recommendation
datasets and manually created templates to mimic conversations.
Focusing on the recommendation part, these datasets lack the essen-
tial naturalness of conversations and oversimplify the conversation
flow [17]. To make the interaction more realistic, there are also
datasets such as [17, 21] that recruit crowd-sourced workers to
interact in real-time under pre-defined search or recommendation
settings. However, they either work on a single domain, rely on a
single modality, or without pairing with any belief state and agent
act annotations. None of them provide a comprehensive base to
study various multimodal conversational search tasks.
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Table 1: Comparison of our dataset MMConv to existing task-oriented dialogue datasets across domain, modality and tasks.
‘Conv.’ and ‘ Rec.’ stand for ‘conversational’ and ‘recommendation’ respectively.

Datasets # Dialogues # Utters Types Domains User Data Modality State Label
Facebook Rec [8] 1M 6M Conv. Rec. Movie × Text ×
REDIAL [17] 10K 163K Conv. Rec. Movie × Text ×
TG-ReDial [44] 10K 129K Conv. Rec. Movie

√
Text ×

OpenDialKG [23] 15K 143K Conv. Rec. Movie, book × Text ×
DuRecDial [21] 10K 156K Conv. Rec. Movie, music, news etc.

√
Text ×

MGConvRex [40] 7K 73K Conv. Rec. Restaurant
√

Text
√

WOZ 2.0[25] 1.2K 12K Conv. Search Restaurant × Text
√

DSTC2 [38] 1.6K 23K Conv. Search Restaurant × Text
√

FRAMES [9] 1.3K 20K Conv. Search Flight, hotel, budget × Text
√

KVRET [10] 3K 15K Conv. Search In-car assistant × Text ×
MultiWOZ [3] 8K 115K Conv. Search Hotel, restaurant etc. × Text

√

VisDial [5] 123K 2.4M Image-based QAs Concepts in image × Multi. ×
GuessWhat [6] 155K 1.6M Image-based QAs Concepts in image × Multi. ×
IGC [24] 4K 25K Image-based QAs Concepts in image × Multi. ×
MMD [29] 150K 6M Fashion Search Fashion × Multi. ×
MMConv 5.1K 39.7K Conv. Search 5 domains in travel

√
Multi.

√

This paper introduces a Multimodal Multi-domain Conversa-
tional search (MMConv 1) environment. It provides a large-scale
multi-turn conversational corpus with dialogues spanning across
several domains and modalities. Along which, there are also paired
real user settings, structured venue database, annotated image
repository as well as crowd-sourced knowledge database. More
importantly, each dialogue is fully annotated with a sequence of di-
alogue belief states and corresponding system dialogue acts which
is scarce in existing multimodal conversation corpora. Hence, MM-
Conv can be used to develop individual system modules for conver-
sational search following task-oriented dialogue research. On the
other hand, with over 5k fully annotated dialogues, MMConv also
enables researchers to carry on end-to-end conversational mod-
elling experiments. Accordingly, we provide a set of bench-marking
results using current SOTA methods for various tasks, which may
facilitate a lot of exciting ongoing research in the area.

2 RELATEDWORK
2.1 Dialogue Data Collection Paradigms
Based on different ways of collecting dialogue data, existing corpora
can roughly be divided into three categories: machine synthesized,
human-to-machine and human-to-human. At the very beginning,
due to the interactive nature of conversation and the tremendous
human labor required, many datasets are machine synthesized es-
pecially for those large-scale ones like [8, 29]. Such approach relies
on simulated participants and exhaustive templates. Templates are
then mapped to a natural language by either pre-defined rules [2]
or crowd-sourced workers [31]. However, the dialogue flow is pre-
defined, and it often does not take into account noisy conditions
experienced in real interactions [1]. To improve the naturalness of
dialogues collected while save human labor to some extend, many
task-oriented dialogue corpora are fostered based on human-to-
machine interactions. They rely on an existing dialogue system
instead of collecting dialogue corpus from scratch. For example,
the dataset for the first Dialogue State Tracking Challenge [37]
1https://github.com/lizi-git/MMConv

is created via human machine interaction for live bus schedule
information over the phone. Later, the second and third DSTCs
[13, 38] have produced bootstrapped human-machine datasets for
restaurant search. Although it seems to be a solution, it is only
possible with an existing working system available.

The most direct and natural way is to collect human-to-human
dialogues. Therefore, based on real user interaction logs on the
Internet, several dialogue corpora such as [22, 28, 30] are released.
However, these are mostly open-domain chit-chats, and the lack
of an explicit goal limits their applicability in task-oriented sce-
narios. Another way to collect human-to-human data is to follow
the Wizard-of-Oz framework (WOZ) [15]. One of the earliest trial
is the ATIS corpus [12]. Recently, the original WOZ framework is
modified to suit for crowd-sourcing. For example, Wen et al. [36]
collected hundreds of dialogues via Amazon Mechanical Turk and
later extended a second versionWOZ 2.0 [25]. Similarly, El Asri et al.
[9] collected the Frame corpus in a more complex travel booking do-
main. More recently, a larger MultiWOZ corpus spanning multiple
domains became popular [3]. However, during collection of these
corpora, in order to enable parallel collection and avoid the distract-
ing latencies in conventional WOZ scenarios, users and wizards
are asked to participate in multiple dialogues concurrently. They
contribute just a single turn to each dialogue while need to review
all previous turns contributed by others. It thus might hinder the
coherence and quality of collected dialogues. On the contrary, our
multimodal conversational search scenario involves multimodality
data and requires frequent interactions with large back-end data-
base. These largely undermine the reliability of leveraging similar
WOZ setting as them. Hence, we resort to the human-to-human role
playing paradigm where each dialogue is completed by a fixed pair
of annotators. With no real-life multimodal conversational search
data publicly available, we use real-world database and real user
settings, together with strict quality control process to make our
dialogue data as real as possible. Many studies [5, 21, 35, 40] have
shown that this approach can be applied to collect high-quality
conversations where a machine learning system can learn from.

https://github.com/lizi-git/MMConv


2.2 Across Modalities and Domains
As partly listed in Table 1, there are many multi-turn task-oriented
conversational datasets contributed recently. We can clearly ob-
serve three trends: (1) a shift from pure text modality to cross
modality; (2) an expansion from single domain to handling multiple
domains at the same time; and (3) an emphasis on search and recom-
mendation scenarios on task-oriented dialogue systems. Dialogue
research starts from the natural language processing community.
Correspondingly most of existing datasets are based on text modal-
ity. Recently, due to convenience of using visual modality in search
and the rapid progress at the intersection of vision and language –
in particular, in image captioning and visual question answering
(VQA), there emerge multimodal dialogue datasets such as [5, 6, 24].
However, as pointed out in [18, 24], the problem setting for these
works actually belongs to image-grounded QA. It is far from the
task-oriented conversational search scenario which involves dy-
namical contexts such as to intersect with an external database to
recommend restaurants. Consequently, Saha et al. [29] proposed
a large scale multimodal conversational search dataset in fashion
domain. However, it largely relies on utterance templates. More
importantly, none of these multimodal dialogue datasets provide
either dialogue state annotation or structured database. These are
hard to support conversational search studies from various angles.

Dialogue analysis in early days tends to work on single domain
setting with a small fixed ontology [37], as automatic speech recog-
nition and spoken language understanding errors are common.
However, handling tasks across different domains has become a
more and more prominent requirement for building conversational
agents [27]. Accordingly, datasets spanning multiple domains like
[3, 9, 21] come into play. Here, we are concerned with five domains
such as food and hotel that are closely related with each other under
travel scenarios. This provides a good base for developing systems
that are capable of handling multiple tasks at the same time.

3 DATA COLLECTION AND ANNOTATION
The MMConv dataset is collected by enabling multimodal conver-
sations between human-to-human role-playing pairs under real life
travel scenarios. We collect multi-domain conversations where an
agent helps user to complete multiple tasks such as recommend
venue or check reservation. As illustrated in Figure 1, the user
needs to role-play a traveler under specific user setting. The tar-
get venue(s) information is provided but the user cannot expose
unique information such as name, address or telephone number. To
guide the conversation while allow flexibility, we provide structured
preference list for user to express in each user setting. The agent
observes the whole venue database and crowd-sourced knowledge
database to find venues, provide recommendations and complete
tasks. At the end of conversation, the user will give a feedback
rating score to evaluate the agent’s performance. To realize the
whole collection process illustrated in Figure 1, we created our own
databases, website and search engines. A total of 87 students are
recruited in the data collection process. As discussed in Section
2.1, we apply the human-to-human role-playing scheme where one
fixed pair completes the whole conversation. Detailed pre-collection
training and various strict quality control checkup processes help
to ensure high quality of the collected corpora.

User Setting: You are at financial
district alone, looking for a food court
to try some local food. After that, you
plan to visit a Mazu temple. like
'%food court%'

Venue DB

Crowd-sourced
Knowledge DB

User Agent

text search image search

Hello, I am looking for a food court
to try local food like those.

These are nasi lemak. Can I check
where is your preferred location?

…

venueName: Amoy Street Food Centre
venueArea: financial district
venueScore: 8.0/10
venueTerms: authentic, nasi lemak, lively…
CreditCards: no
…

User Rating: 5

Figure 1: The multimodal conversation collection setting.
We collect 39.7K multimodal turns between pairs of human
players. The user must follow the user setting and deliver
venue information correctly; the agentmustmake use of the
text & image search engines to respond and make appropri-
ate venue recommendations for good user rating.

3.1 Task Setting
To the best of our knowledge, there is no real-life multimodal con-
versational search data publicly available. To make our data as close
to real life settings as possible, we collect realistic databases, harvest
real user settings from social sites, design various conversation sce-
narios that agent might encounter and explicitly define the targets
of conversations. Together they ensure the appropriateness and
naturalness of our overall task setting.

3.1.1 Real databases and user settings. We construct two real-
world databases (venue DB and crowd-sourced knowledge DB)
and an associated image repository. The venue DB is collected from
Foursquare City Guide based on Singapore. We focus on five do-
mains: food, hotel, nightlife, sightseeing and shopping mall, which
are closely related to each other under the travel scenario. Initially,
there are 14,671 venues obtained. Later filtering by rating scores,
number of reviews (> 5) and images (> 10), we finalize 1,771 venues
in our venue DB as in Table 2. For these venues, detailed information
such as score, price range, location, whether have wifi or parking
service etc. are included. Foursquare City Guide also provides abun-
dant user ratings, reviews, posted photos for these venues 2. The
reviews are often commented based on existing user experiences,
hence would offer detailed information such as popular dishes or
dining environment. The posted photos largely come from profes-
sional or smart phone camera shooting in location, which gives
direct feeling of the venue and serves as a convenient way of expres-
sion. We thus construct a crowd-sourced knowledge DB containing
user reviews about these venues. Each review is associated with
meta information such as number of up-votes. We also organize the

2Sensitive user information is removed from the data.



Table 2: Venue distribution over different domains.
Domain food hotel nightlife mall sightseeing
# Venues 1,162 83 128 96 302
# Reviews 27,303 2,661 3,064 3,803 6,019
# Images 67,058 2,268 12,692 851 31,084

Table 3: Statistics of different conversation scenarios.
Scenarios # conversations
Search venue by image 104
Recognize concept by image 214
Find venue by preferences 4,924
Cross-domain venue recommendation 3,007
Subsequent venue substitution 683
Venue comparison 182
Find specific shop in mall 53

images about these venues into an image repository and annotate
them with image labels beside the venue association.

To collect real user settings, we crawl reviews and forum threads
from tripadvisor.com and lonelyplanet.com. Venues appeared in
the same thread are regarded as a venue bunch that can be used as
targets in the same conversation, such as “Marina Bay Sands” and
“Gardens by the Bay”. The former is an integrated landmark resort
while the later is a famous garden nearby. They are frequently
co-visited by travelers to Singapore. To eliminate possible noises
in crawled data, we do manual filtering by local undergraduate
students and finally harvest 386 venue bunches for goal setting.
Based on the contexts in review or forum threads for these venue
bunches, we further enrich the goal settings with matching details
such as “travel alone”, “with kids” or “pub lover” etc.

3.1.2 Various conversation scenarios. We further analyze the con-
texts of user settings and harvest seven broad conversation scenar-
ios as in Table 3. We then enrich them with more details. Generally
speaking, we follow the rule of naturalness and utility of things.
For instance, when some distinctive local food is associated with a
venue such as “ayam buah keluak”, “bak chor mee” or “chee cheong
fun”, we will apply the recognizing concept by image scenario to
simulate user wanting to try local food without knowing the exact
name. When the target venue got unique appearance, we set the
searching venue by image scenario to provide a convenient way
for search. If the target venues in a bunch are of same type with
minor differences only, we will activate the subsequent venue sub-
stitution scenario to encourage user’s goal change situation during
conversation. At the end, there are seven broad scenarios captured
in the corpus. The statistics are listed in Table 3. Note that one
conversation may involve several different scenarios. For example,
the agent may first recognize a dish by image and find the venue by
uttered preferences, then do cross-domain venue recommendation
to find another venue as illustrated in Figure 1.

3.1.3 Targets of conversations. Based on user setting and conver-
sation scenario, we explicitly define structured preferences for user
as additional target beyond the venue(s) target. In which we list
attributes with preference level to inform, tasks to complete, and
special settings such as provide image to get food name. It helps
to regularize the conversation flow while allow expression flexibil-
ity. Beyond existing task oriented dialogues that over-emphasize

on task completion, we also encourage to understand how people
naturally express preferences. At the end of conversation, the user
is required to rate agent’s overall performance. The score ranges
from 1 to 5, and the higher the better. The score 3 sets a baseline
for successful conversations where venues are found and tasks are
completed. The score 5 refers to successful, responsive, informative
conversations that satisfy users the most. In our final corpus, only
those dialogues with score 3 or higher are kept.

3.2 User Side
To facilitate conversation collection, three sections of information
are provided to user: user setting, structured preferences and venue
information. As illustrated above, the user setting sets a background
for the conversation. In structured preferences, we list several pre-
ferred attribute values with preference levels for the user to express
and assign several tasks such as “check outdoor seating” or “get
phone number” to complete. For detailed venue information, it
is closely related to domain slots structure. The domain slots of
a task-oriented dialogue system is often defined by an ontology,
a structured representation of the back-end database. The ontol-
ogy defines all entity attributes called slots such as venueArea or
venueScore, and all possible values for each slot. The general on-
tology structure is shown in Table 4. In general, the slots can be
divided into informable slots and requestable slots. The informable
slots are the attributes that the user can provide to agent for nar-
rowing down the search space (e.g. venueArea or price-range). The
requestable slots refer to some unique information such as venueAd-
dress or phone-number that the user cannot expose. Beyond these
fixed slots, we notice that users tend to mention terms such as
“family friendly”, “rooftop garden” or “mini bars” etc. to describe the
target venues. These are hard to be grouped into any specific slot.
We thus keep a special open span slot to contain all these salient
terms. It allows our dialogue to be more flexible and rich in details.
We also list some images for venues in the venue information sec-
tion. The user can directly drag the image to input box as part of
the utterance. There is no overlap between images in goals and in
databases to avoid exact match.

3.3 Agent Side
The agent player responds freely to user based on conversation
history and back-end databases. Considering the large amount of
attributes, reviews and images associated with venues, it is unreal-
istic for agent player to go through all of them. We thus provide
a text search engine and image search engine to the agent. The
text search engine is built using Elasticsearch on the venue DB,
while image search engine is built on ResNet-50 extracted image
features. To make it easier for agent player, the text search results
are further grouped by attributes and the image search results are
ranked by similarity. All venue names appeared in the results can be
clicked and detailed venue information will be shown in a pop-up
page. Unlike the crowd-sourcing setting in MultiWOZ [3] where
the agent and user first need to go through the dialogue history
then contribute only one turn, the agent and user pair in our setting
needs to complete the whole conversation and fulfill all pre-set
tasks to ensure coherence and consistency of generated dialogues.

tripadvisor.com
lonelyplanet.com


Table 4: Full ontology of all domains in our corpus. The upper script indicates which domain it belongs to. ★: universal, 1:
food, 2: hotel, 3:nightlife, 4:mall, 5:sightseeing.

Action inform / request/ recommend / negate / do not care/ confirm / show image/ greet / bye / others

Slots
drinks1,3 / music1,3 / reservations1,2,3,5 / dining options1,3 / stores4 / wifi★ / menus1,2,3 / outdoor seating1,3 / venue domain★
venue neighborhood★ / wheelchair accessible 1,3/ smoking 1/ parking 1,3/ restroom 1,2,3/ credit cards ★ / pricerange 1,3/
venuename★ / venue score★ / tips★ / telephone★ / venue address★

3.4 Annotation
The process of annotating belief states and dialogue acts is widely
treated as themost challenging and time consuming part of dialogue
data collection. It is usually done after the dialogue is generated as
[3]. However, our preliminary trials show that asking the players
to annotate their generated contents at the same time not only
saves time for annotation but also provides a good base for quality
checking. Therefore, our annotation of conversations is divided into
four stages: during collection, during modification, slot mapping
and manual correction. During the first stage, both user and agent
players are asked to select out value for slots or salient terms (such
as expensive or cozy) and pair them with intent acts (such as inform
or request in Table 4). Then the generated dialogue with annotations
will be manually checked for quality verification. If it does not pass,
we will ask the pair to modify the dialogue and annotation until
it meets our criteria. Then in the third stage, we organize these
selected terms or phrases into slot value pairs with the help of venue
database. After that, we further do manual correction to eliminate
some arbitrary errors.

We also annotate all the images in our repository regardless of
whether they are used in conversations or not. It would facilitate
detailed multimodal research in various aspects. For this part, we
combine automatic annotation with human annotation in an itera-
tive fashion. EfficientNet [33] is leveraged to extract image features.
We use K-Means clustering to cluster these images, manually select
some obvious clusters out and assign label to them. We then try
different parameter settings to do clustering and selection on the
remaining images. Finally, 315 classes are generated on the image
repository and the remaining noisy images are removed. We ob-
serve that a large portion of the removed images are Selfie images
and menu photos.

3.5 Data Quality
To ensure the quality of collected conversation data, we apply the
5-step scheme of training, collection, checking, modification, and
re-checking. Before the collection of data, we carry out training
for all participants for about half an hour. When the dialogues are
generated successfully during collection, we add a manual checking
procedure. If a dialogue does not pass the checking, the participants
will be notified and reasons will be given. Then, the participants
need to modify the conversation and annotations. To save human
labor, only one time modification is allowed and no pay will be
credited to conversations failed to pass the last check.

Furthermore, to ensure the quality of annotations, we estimate
the inter-annotator agreement for the last manual correction stage
of dialogue act annotation. We calculate the averaged weighted
kappa value [11] for all dialogue acts over 300 random sampled
turns. The high score of 𝜅 = 0.82 demonstrates good agreements
between annotators.

4 THE MMCONV CORPUS
4.1 Data Structure
The main goal of the data collection is to acquire highly natural
conversations that cover a wide variety of styles and scenarios. In
total, the presented corpus consists of five domains: Food, Hotel,
Nightlife, Shopping mall and Sightseeing. Controlled by our various
task settings, the collected dialogues cover between one to four
domains per dialogue, and are thus of greatly varying length and
complexity. There are 808 single-task dialogues that contains a
single venue target and 4, 298 multi-task dialogues consisting of
at least two to four venue targets. These different venues vary in
domains most of the times. For ease of illustration, we name as
single domain dialogues and multi-domain dialogues respectively.

According to the information modalities involved in dialogues,
we can also group the dialogues into 751 single-modality dialogues
and 4, 355multi-modality dialogues. The corpus was randomly split
on goals into a train, validation and test set to enforce reproducibil-
ity of results. Only those successful dialogues (all venues are found
and tasks are completed) are included in our corpus. Each dialogue
consists of a goal, multiple turn utterances as well as a set of belief
states and dialogue acts with slots (values) annotations.

4.2 Data Statistics

Table 5: The general statistics of the MMConv corpus.
Entry Number
# dialogues 5,106
# turns 39,759
# single domain v.s. multi-domain 808 v.s. 4,298
# single modality v.s. multi-modality 751 v.s. 4,355
# goals 386
# total venues in DB 1,771
# total images 113,953
# total reviews 42,850
# average user ratings 4.67

The general statistics of the MMConv corpus are listed in Table
5 3. Following data collection process from the previous section,
a total of 5, 106 successful conversations were collected. Figure 2
(a) shows the distribution of dialogue length grouped by single
and multiple domain dialogues. The average number of turns are
7.4 and 8.1 respectively. Figure 2 (b) presents the distribution of
single and multi modality dialogues, in which the average turn
numbers are 7.1 and 7.9 accordingly. Note that most of dialogues
with multiple venue targets involve multiple modalities, thus multi-
modal dialogues are more frequent than single-modal ones when
the dialogue length exceeds seven. We also plot the distribution
over turn length (i.e. number of tokens in turn) for user and system
3Only dialogues with user rating 3 or higher are kept in MMConv.
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Figure 2: Dialogue length (number of turns per dialogue) and turn length (number of tokens per turn) distributions.

(a) Leveraging crowd-sourced tips (b) Making use of images (c) Performing extra dialogue acts

Figure 3: Correlations between user rating score and agent’s behaviors.

(a) Dialogue act frequency (b) Distribution of dialogue act number per turn (c) Slot frequency

Figure 4: Various frequency statistics for dialogue acts and slots in the corpus.
We believe that more diverse agent responses would enable the

training of more advanced generation models. As the user provides
rating score for agent’s responses at the end of each dialogue, we
plot the correlations between user rating score and various agent
behaviors in Figure 3. Specifically, Figure 3 (a) shows the correla-
tion between user rating and the overlapping ratio of generated
responses and reviews. As expected, when the agent makes good
use of reviews of venues when making recommendation or sug-
gestions to the user, the user tends to be more satisfied. Figure 3
(b) presents the correlation between user rating and the number of
images involved in agent’s responses. Intuitively, providing images
to user would give them a more direct feeling of the recommended
place thus improve user satisfaction. Moreover, we plot the cor-
relation between user rating and agent’s initiative in Figure 3 (c).
Besides answering user’s requests, the number of new dialogue acts
generated by the agent reflects its activeness and involvement in
the conversation. This also affects user ratings.

We group the statistical distributions of annotations in Figure
4. We first show the distribution of annotated dialogue acts of
dialogues in Figure 4 (a). It is a summarized list of actions and corre-
sponding frequencies where different types of actions like request
are grouped together. The Figure 4 (b) presents the distribution of
number of acts per turn. Over 80% of dialogue turns have more
than one dialogue act for either user or agent showing again the
complexity and richness of collected dialogues. It creates new chal-
lenges for reinforcement learning-based algorithms as concurrent
actions are common. Figure 4 (c) shows the distribution of slots
annotated in the corpus. Due to the space limitation, only the most
frequent slots are listed in the figure. It gives an overview of the
information diversity during conversation procedure.

5 BENCHMARK RESULTS AND DISCUSSIONS
The collected MMConv corpus can serve as a great benchmark for
a range of conversational tasks. To show the potential usefulness
of the MMConv corpus, we apply modular-based conversational
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training of more advanced generation models. As the user provides
rating score for agent’s responses at the end of each dialogue, we
plot the correlations between user rating score and various agent
behaviors in Figure 3. Specifically, Figure 3 (a) shows the correla-
tion between user rating and the overlapping ratio of generated
responses and reviews. As expected, when the agent makes good
use of reviews of venues when making recommendation or sug-
gestions to the user, the user tends to be more satisfied. Figure 3
(b) presents the correlation between user rating and the number of
images involved in agent’s responses. Intuitively, providing images
to user would give them a more direct feeling of the recommended
place thus improve user satisfaction. Moreover, we plot the cor-
relation between user rating and agent’s initiative in Figure 3 (c).
Besides answering user’s requests, the number of new dialogue acts
generated by the agent reflects its activeness and involvement in
the conversation. This also affects user ratings.

We group the statistical distributions of annotations in Figure
4. We first show the distribution of annotated dialogue acts of
dialogues in Figure 4 (a). It is a summarized list of actions and corre-
sponding frequencies where different types of actions like request
are grouped together. The Figure 4 (b) presents the distribution of
number of acts per turn. Over 80% of dialogue turns have more
than one dialogue act for either user or agent showing again the
complexity and richness of collected dialogues. It creates new chal-
lenges for reinforcement learning-based algorithms as concurrent
actions are common. Figure 4 (c) shows the distribution of slots
annotated in the corpus. Due to the space limitation, only the most
frequent slots are listed in the figure. It gives an overview of the
information diversity during conversation procedure.

5 BENCHMARK RESULTS AND DISCUSSIONS
The collected MMConv corpus can serve as a great benchmark for
a range of conversational tasks. To show the potential usefulness
of the MMConv corpus, we apply modular-based conversational
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place thus improve user satisfaction. Moreover, we plot the cor-
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are grouped together. The Figure 4 (b) presents the distribution of
number of acts per turn. Over 80% of dialogue turns have more
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annotated in the corpus. Due to the space limitation, only the most
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in Figure 2 (c). The agent responses are much longer (13.7) than
users utterances (12.0).

We believe that the more diverse agent responses would facilitate
the training of more advanced generation models. As the user pro-
vides rating score for agent’s responses at the end of each dialogue,
we plot the correlations between user rating score and various
agent behaviors in Figure 3. Specifically, Figure 3 (a) shows the
correlation between user rating and the overlapping ratio of gener-
ated responses and crowd-sourced user review tips. As expected,
when the agent makes good use of reviews of venues when making
recommendation or suggestions to the user, the user tends to be
more satisfied. Figure 3 (b) presents the correlation between user
rating and the number of images involved in agent’s responses.
Intuitively, providing images to user would give them a more direct
feeling of the recommended place thus improve user satisfaction.
Moreover, we plot the correlation between user rating and agent’s
initiative in Figure 3 (c). Besides answering user’s requests, the
number of new dialogue acts generated by the agent reflects its

activeness and involvement in the conversation. This also affects
user ratings.

We group the statistical distributions of annotations in Fig-
ure 4. We first show the distribution of annotated dialogue acts
of dialogues in Figure 4 (a). It is a summarized list of actions
and corresponding frequencies. Different dialogue acts like re-
quest(venueArea) and request(price-range) for the same action re-
quest are grouped together. The Figure 4 (b) presents the distri-
bution of number of acts per turn, where over 80% of dialogue
turns have more than one dialogue act for either user or agent;
this again shows the complexity and richness of the collected dia-
logues. As a corpora with more realistic and complex conversational
search behaviours like these, MMConv creates new challenges for
reinforcement learning-based algorithms as concurrent actions are
common. Figure 4 (c) shows the distribution of slots annotated in
the corpus. Due to the space limitation, only the most frequent
slots are listed in the figure. It gives an overview of the information
diversity during conversation procedure.



5 BENCHMARK RESULTS AND DISCUSSIONS
MMConv can serve as a benchmark resource for a range of conver-
sational tasks. We implement several SOTA methods for various
tasks and adapt to MMConv. We report results and discuss their
limitations and the new challenges introduced by the MMConv.

5.1 Multimodal Dialogue State Tracking
As a bottleneck problem, dialogue state tracking (DST) interprets
user goals and feeds downstream policy learning. Currently, multi-
modal DST is still in its infancy and the purely textual counterpart
has been well researched [20, 43]. In general, they classify over
fixed ontology or identify text span in utterances to extract or gen-
erate slot values. Since the ontology of our corpus contains both
fixed slots and flexible salient terms, we adopt the state-of-the-art
method DS-DST [41] from textual DST and make use of image
information via predicted labels. As shown in Figure 5, it adapts a
single BERT [7] question answering model to jointly handle both
the categorical slots and non-categorical ones (e.g. flexible salient
terms). For the categorical slots, it selects the most plausible val-
ues from the picklists based on the contextual representation (the
left part). For the non-categorical slots, it utilizes a two-way linear
mapping to find text spans (the right part). We train EfficientNet
[33] separately for image label classification, then concatenate the
predicted labels of images to its corresponding turn utterance.
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Figure 5: The adapted DS-DST model [41] to jointly handle
categorical and non-categorical slots.

We report the joint accuracy results over five datasets in Ta-
ble 6. It measures the accuracy of the generated belief states as
compared to oracle belief states. Model outputs are only counted
as correct when all the predicted slot values exactly match the
oracle values. The same model was trained across five datasets
separately. Although not directly comparable, Table 6 shows that
the model consistently performs worse on the new dataset than
on the others. It shows that the new dataset is more demanding
as the conversations are richer and more complicated. Specifically,
there are two major observations. First, existing dialogue ontol-
ogy over-simplifies conversational search scenarios. For example,
WOZ 2.0 only contains three categorical slots: area, price-range and
food-type for finding restaurants, and provides two non-categorical
slots: postcode and phone number with obvious appearance patterns.
Together with a limited number of value candidates for these slots,
it results in virtual-high performance of 0.86 in joint accuracy. The
DSTC2 dataset has more dialogues but the shared ontology with
WOZ 2.0 is still rather simple. The later datasets MultiWOZ 2.0 and

Table 6: The joint accuracy scores for multimodal dialogue
state tracking using the adapted DS-DST model [41].

Datasets Categorical Non-categorical Overall
WOZ 2.0 0.93 0.99 0.86
DSTC2 0.94 0.95 0.81
MultiWOZ 2.0 0.70 0.71 0.52
MultiWOZ 2.1 0.69 0.68 0.51
MMConv 0.91 0.23 0.181

1 Intent action is also correct for all slots.

2.1 provide rich ontology with over 20 slots across seven domains.
Thus the DST performance drops dramatically (from around 0.8 to
0.5). Moreover, the intent action for slots are all inform for these
datasets. However, inMMConv, we observe that users have different
intentions, and tend to provide useful information such as ‘good for
date’, ‘great value’ etc. which are hard to be grouped into slots but
essential for finding venue. We therefore include action prediction,
and organize these salient terms into the non-categorical part. The
relatively low performance calls for more advanced mechanisms to
handle them. Second, images in multimodal conversational search
play important roles. For example, besides recognizing the exact
food concepts from food images, it can further convey detailed
information such as environment or be used to search for similar
images thus narrow down the venue candidates. But current DST
models largely lack good ways to handle images. These annotated
datasets such as DSTC2 and MultiWOZ are all purely text-based,
while the multimodal ones such as VisDial, IGC or MMD shown in
Table 1 all lack annotations. Our fully annotated MMConv dataset
provides a good base for carrying out such studies.

5.2 Recommendation in Conversational Search
Under the conversational search setting, given the belief state of di-
alogue history, the agent decides what to perform next – whether to
request for more information, check a specific value or recommend
a place (or an item). Most of existing conversational recommen-
dation studies over-simplify the task [19]. They either work on
simulated data [16, 32, 42], or simplify the slot value structure into
one-hot attributes [4, 17]). Hence, we adopt the most recent state-
of-the-art model UMGR [40] that is closest to our more complicated
conversational setting. As shown in Figure 6, it introduces user
memory graph to holistically represent the knowledge about users
and associated items. Based on updating and reasoning over the
graph, it predicts action for the agent first, and then rank slots, val-
ues or items based on the predicted action. In this way, policies that
contain users/items unseen during training can also be generated.

The results are shown in Table 7. Act Accuracy is reported for all
predicted dialogue acts. EMR stands for turn-level entity matching
rate, which compares predicted entities like slots, values, venues
against annotated ones when the dialogue act is predicted correctly;
IMR stands for item matching rate, which evaluates the predicted
venues against the ground-truth across all turns in a dialogue.

As expected, the same model performs badly on MMConv as
compared to the other datasets. First, the act accuracy of MMConv
is almost 1.74 times lower than that of MGConvRex. It is also infe-
rior to that of TG-ReDial. This is mainly because the responses in
MMConv often have multiple actions. We observe 34.6% of agent
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Figure 6: The adapted UMGR model [40] for conversation
recommendation modeling.

Table 7: The results for conversational recommendation us-
ing the adapted UMGR model [40] across datasets. Images
are transformed into predicted labels in text.

Metrics MGConvRex TG-ReDial MMConv
Act Accuracy 65.70 32.65 23.96
EMR@1 33.92 19.45 10.01
EMR@3 48.47 22.32 11.80
EMR@5 52.54 26.49 15.91
IMR 67.93 17.60 9.58

responses containingmore than one action, even when purely greet-
ing or goodbye turns with single action are counted. However, most
of the current datasets and models (even for UMGR) on conversa-
tional recommendation assume a single action per turn for agent
[16, 32, 42]. Such simplification makes the learning easier but hin-
ders the applicability of the developed methods. Second, the EMR
and IMR on MMConv are also the lowest. It shows the complexity
of our dataset. MGConvRex focuses on restaurant domain with
only 10 slots and a total of 470+ values. However, MMConv covers
five domains with 21 different slots and a much larger number of
values. The number of venue targets (1,771) also exceeds that of
MGConvRex. All these call for more advanced models to handle.
Note that although TG-ReDial contains over 33K movies, it has
about 2.5K topics. With 13.16movies per topic on average, the topic
representation largely narrows down the recommendation space.

Moreover, current researches on multimodal conversational rec-
ommendation modelling are rather limited. Most of current works
recognize concepts from image first and then use the recognized
concepts as text labels or vector representations [18]. We observe in
MMConv that images are associated with concept labels as well as
specific venues. Moreover, during conversation, users may express
their intentions via images which also calls for better model to
capture and model.

5.3 Response Generation
Generating appropriate responses for satisfactory task comple-
tion is the ultimate goal of task-oriented dialogue agents. Existing
pipeline approaches generally predict multiple dialogue acts first
and use them to assist response generation. To capture inherent
structures of multi-domain dialogue acts and consider the seman-
tic associations between acts and responses, the state-of-the-art
model MARCO [34] generates dialogue acts and responses con-
currently. As illustrated in Figure 8, by attending to different acts,

the response generation module can dynamically capture salient
acts and produce higher-quality responses. We adapt this model to
our multimodal response generation scenario as follows. We first
use EfficientNet [33] to transform images in dialogue history to
textual labels and append it to corresponding turn utterances. The
model takes in the transformed dialogue history and belief state as
input and outputs agent actions and response. Beyond the existing
dialogue acts for textual dialogues, we include actions regarding
image modality such as “inform image: hotel room”. When such
action is predicted, we choose images associated with the specific
venue regarding the predicted concept as the image response part.
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Figure 3: Architecture of the proposed model for act and response co-generation, where act and response generators
share the same encoder. The response generator is allowed to attend to different act hidden states as needed using
dynamic act attention. The two generators are trained jointly and optimized by the uncertainty loss.

sequence is organized by domain, action and slot,
while items at each level are arranged in dictionary
order, where identical items are merged. When de-
coding each act token, we first represent the current
belief state with an embedding vector vb and add it
to each act word embedding ea

t as:

ua
t = Wbvb + ea

t . (6)

Finally, the decoder of Section 3.2 is used to gener-
ate hidden states Ha and act tokens accordingly.

4.2 Acts and Response Co-Generation

Dialogue acts and responses are closely related in
dialogue systems. On one hand, system responses
are generated based on dialogue acts. On the other,
their shared information can improve each other
through joint learning.

Shared Encoder Our dialogue act generator and
response generator share one same encoder and
input, but having different masking strategies for
the input to focus on different information. In par-
ticular, only the current utterance is kept for act
generation, while the entire history utterances are
used for response generation.1

1Empirical evidences show that act generation is more
related to the current utterance, while response generation
benefits more from long dialogue history.

Dynamic Act Attention A response usually cor-
responds to more than one dialogue act in multi-
domain dialogue systems. Nevertheless, existing
methods mostly use a static act vector to represent
all the acts, and add the vector to each response to-
ken representation. They ignore the fact that differ-
ent subsequences of a response may need to attend
to different acts. To address this issue, we compute
dynamic act attention or

t from the response to acts
when generating a response word:

or
t = F(hr

t , H
a, Ha) (7)

where hr
t is the current hidden state produced by

Equation 3. Then, we combine or
t and hr

t with
response-to-history attention cr

t (by Equation 4) to
estimate the probabilities of next word:

p(yt|y1:t�1) = softmax(Wr[h
r
t ; c

r
t ; o

r
t ]) (8)

Uncertainty Loss The cross-entropy function is
used to measure the generation losses, La(✓) and
Lr(✓), of dialogue acts and responses, respectively:

La(✓) = �
TaX

j=1

log p(a
⇤(i)
j |a(i)

1:j�1, T, D, vb) (9)

Lr(✓) = �
TrX

j=1

log p(y
⇤(i)
j |y(i)

1:j�1, T, D, A) (10)
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Figure 7: The adapted MARCO model [34].

Table 8: The results for response generation using the
adapted MARCO model [34] across datasets.

Metrics MultiWOZ 2.0 MultiWOZ 2.1 MMConv
Inform Rate 90.3 91.5 88.71
Success Rate 75.2 76.1 82.4
BLEU 19.45 18.52 17.09
Combined 102.20 102.32 102.64
Image Match – – 0.17

1 We evaluate via DB search on venue prediction turns as others.

Table 8 reports the results for the adapted MARCO model on
three datasets. Image Match refers to the match rate of image con-
cept predicted for correct venue. Since the MultiWOZ 2.0 and Mul-
tiWOZ 2.1 datasets do not contain image responses, we only report
their results for the textual part. The inform rate and success rate
capture how well the tasks are completed [14]. BLEU (4) score [26]
measures the fluency of the generated responses. On one hand, we
observe relatively good inform and success rate combination on
MMConv. Similar to the evaluation on other textual datasets, we
rely on pure text-based database queries. It actually inflated the
performance as the returned result sets are large. Later we evaluate
via directly comparing the predicted venue names to the ground
truth venue names on the SimpleTOD [14] model as in Table 9,
the performance drops dramatically. This actually signals a call
for more appropriate way to evaluate multimodal responses. On
the other hand, the BLEU score on MMConv is lower than that on
others. It is probability due to the fact that the system responses
in MMConv are more complicated. For example, we give more sta-
tistics for MultiWOZ 2.1: the responses in it contain 1.52 dialogue
acts on average while those in MMConv contain 1.76 dialogue acts.
Besides the information expressed via images, this indicates more
complicated semantics expressed in MMConv responses. Also, as



Table 9: Results for DST, agent’s act prediction and response generation by the adapted end-to-end SimpleTOD model [14].
Datasets Joint Accuracy Inform Rate Success Rate BLEU Score Combined Score Image Match
WOZ 2.0 0.81 77.2 68.8 18.79 91.79 –

MultiWOZ 2.0 0.57 84.4 70.1 15.01 92.26 –
MultiWOZ 2.1 0.56 85.0 70.5 15.23 92.98 –
MMConv 0.282 14.61 9.21 20.30 32.20 0.02

1 We evaluate on predicted agent’s action results. At least one exact venue should be correct to be count as informed.
2 Here we exclude the effect of flexible open span here .

shown in Figure 3, these responses further make use of external
crowd-sourced knowledge, which makes it more rich in content.
For the image response part, we apply a very simple and intuitive
selecting mechanism. Since image responses have large potential
in boosting user satisfaction as shown in Figure 3, we expect more
advanced methods to be developed for this part.

SimpleTOD

dialogue history belief state dialogue acts delex. response

Image response
Image actions

Track Belief State
Predict Action Generate Response

Figure 8: The adapted SimpleTODmodel [14] for completing
multiple tasks. It casts multiple tasks as a single sequence
generation problem.

5.4 Joint Model across Multiple Tasks
Task-oriented dialogue is often decomposed into three tasks: un-
derstanding user inputs, deciding next actions, and generating re-
sponses. SimpleTOD [14] is a simple approach for all of them. It
uses a single, causal language model trained on all sub-tasks recast
as a single sequence prediction problem. It enables the modelling of
inherent dependencies between sub-tasks, by optimizing all tasks
in an end-to-end manner. We adapt it to the multimodal conver-
sational modelling as shown in Figure 8. First of all, for images
in dialogue history, we use the trained EfficientNet [33] to extract
labels and append them to the original utterances. Then, the specific
image slot and corresponding values are reflected in belief state and
dialogue acts of agent, e.g. ‘inform image: bar interior’. Later for
response generation, besides generating textual responses sequen-
tially, we also select images as response from the repository of the
predicted venue regarding the generated image concept. Similar to
the original SimpleTOD model, we delexicalize the agent response
during both training and testing.

We compare the results on four datasets in Table 9. Regarding the
dialogue state tracking sub-task, SimpleTOD outperforms the afore-
mentioned DS-DST method over half of the datasets. Its superior
performance derives mainly from the strong modelling and gener-
ation capability of the pre-trained GPT-2 model. For WOZ 2.0, as
the ontology is simple, the mainly classification based counterpart
works better. For the action prediction and response generation

sub-tasks, the inform rate and success rate are related to the dia-
logue task completion. We observe dramatic drops regarding the
inform rate and success rate on MMConv. From one aspect, MM-
Conv contains a much larger number of target venues, slots and
candidate values, which complicates the tasks. For example, there
are 21 basic slots with over 6K candidate values in MMConv while
MultiWOZ 2.1 only contains 19 basic slots with about 2K unique
candidate values. And there are 1, 771 venues in the database of
MMConv, while MultiWOZ contains only 224 venues. From another
aspect, we calculate the inform rate and success rate for the other
three datasets via database query results. While for MMConv, we
evaluate by the exact venue name matching since it is predicted by
the model. However, this exacting match condition is rather strict.
Regarding the BLEU score, although MARCO reports lower score
for MMConv as compared to MultiWOZ ones, SimpleTOD returns
better score for it. This might be because the salient terms in belief
states and actions of MMConv provide good signals for response
generation and the GPT-2 model learns the patterns well. For image
responses, the match rate is rather low. The main reason is due to
the low inform rate. We only count as a match when both the venue
name and image concept are predicted correctly. Our preliminary
human evaluation show that images in responses help to improve
user satisfaction as compared to the responses without it. However,
the current way of incorporating it is rather simple and intuitive,
more advanced methods can be investigated.

6 CONCLUSION
As multimodal conversational search is gaining more and more
attention in both academia and industry, the necessity of building an
entirely data-driven conversational agent becomes more apparent.
Various corpora were gathered to enable data-driven approaches
to conversation modelling. To date, however, the available datasets
were usually constrained in linguistic variability, lacking multi-
domain multi-modality use cases or unavailability of annotations.
In this paper, we construct a relatively comprehensive environment
for multimodal conversational search. Along with fully annotated
dialogues, we also provide realistic user settings, structured venue
database, crowd-sourced knowledge database as well as annotated
image repository. We hope that MMConv would offer valuable
training data and a new challenging test-bed for existing modular
based approaches ranging from multimodal dialogue state tracking,
conversational recommendation to response generation. Moreover,
the scale of the data would help push forward research in the unified
end-to-end multimodal conversational modelling.
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