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ABSTRACT
Multi-domain dialogue state tracking (DST) is a critical component
for monitoring user goals during the course of an interaction. Ex-
isting approaches have relied on dialogue history indiscriminately
or updated on the most recent turns incrementally. However, in
spite of modeling it based on fixed ontology or open vocabulary,
the former setting violates the interactive and progressing nature
of dialogue, while the later easily gets affected by the error ac-
cumulation conundrum. Here, we propose a Recursive Inference
mechanism (ReInf) to resolve DST in multi-domain scenarios that
call for more robust and accurate tracking capability. Specifically,
our agent reversely reviews the dialogue history until the agent has
pinpointed sufficient turns confidently for slot value prediction. It
also recursively factors in potential dependencies among domains
and slots to further solve the co-reference and value sharing prob-
lems. The quantitative and qualitative experimental results on the
MultiWOZ 2.1 corpus demonstrate that the proposed ReInf not
only outperforms the state-of-the-art methods, but also achieves
reasonable turn reference and interpretable slot co-reference.
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1 INTRODUCTION
Starting from spoken dialogue system, the dialogue state tracking
component in early days is difficult because automatic speech recog-
nition (ASR) and spoken language understanding (SLU) errors are
common. It thus tends to work on single domain setting with small
fixed ontology [29]. Later, with great advancements in ASR and
the availability of textual corpuses, many single-domain DST algo-
rithms have been proposed [16, 21, 35] on textual inputs. However,
single domain models are hard to scale to multi-domain setting
which is more realistic in tracking user goals. When dialogue agents
need to handle multiple tasks across different domains, the tracking
problem becomes more complicated. It requires DST models to be
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RESTAURANTAccurate evidence finding

• Domain changes, requirements also
change

• Human rarely recall all their previous 
utterances but only reversely review 
the domain slot related turns

Slot reference
• Nuanced phenomena often 

occurred in natural conversations 
such as co-reference and value-
sharing

• Value conflicts
(departure - destination)
(arriveby-leaveat)

Shortages
U: i’am looking for a moderate price british restaurant in south of the town.

S: sorry, i am not finding any place […]. would you like to try another area?
U: that is fine, how about in middle of the town?

S: fitzbillies restaurant serves british food, [...]. 
U: that sounds fine. can you book it please and get me the reference number?

S: sure , what day and time would you like and how many people ? 
U: i would like a table for 5 at 11:30 on tuesday [...]

S: okay, the booking was successful. [...]. anything else i can help you with? 
U: I am also looking for some entertainment in the same area as the restaurant

S: is there any type of attraction you would like me to search?
U: why do not you try an architectural attraction.

S: all saints church looks good, would you like to head there?
U: great, can you find me a taxi to the restaurant first?

Q: attraction area [SEP] east west south north center [SEP]
…
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Figure 1: An example dialogue in MultiWOZ 2.1. Evidence
appears in certain turns for specific domain slots. We also
observe co-reference and value sharing among slots (in red).

more accurate in finding evidence for slot value prediction and
more robust in handling the correlation among various slots.

Recent multi-domain DST methods try to address dialogue mod-
eling in two different schemes: 1) Dialogue history scheme: taking
the whole or window-sized dialogue history as input, it predicts slot
value without explicitly discriminating over turns of utterances; 2)
Turn by turn scheme: relying on the dialogue state generated for the
previous turn and the most recent turn utterance(s), it learns to re-
generate new state or partially update the previous state. However,
in spite of different prediction mechanisms such as ontology-based
or open-vocabulary based, both schemes are sub-optimal. The for-
mer dialogue history scheme usually treats dialogue history as a
long sequence indiscriminately, while the conversation is naturally
turn by turn progressively to reach an information alignment be-
tween user and agent. The conversation topic often jumps from
one domain to another (73.8% in data, e.g., from restaurant to hotel
as shown in Figure 1), and the user requirements may also shift
(7.8% in data, e.g., from cheap to moderate price). As human rarely
recall all their previous utterances but only reversely review the
domain slot related turns, we expect our DST tracker to selectively
review the dialogue history like us human during the conversation.
The later turn by turn scheme actually works towards our selective
design in the sense that it focuses on turn level. However, in this
scheme, the error appeared in previous turn state will accumulate
and largely affect later turns’ prediction accuracy.

To accurately select the exact turns for a specific domain slot
is a non-trivial task. For example, as illustrated in Figure 1, the
agent needs to first resolve the domain for turns and find the turn
containing values for the slot. More difficultly, there are nuanced
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phenomena often occurred in natural conversations such as co-
reference and value-sharing, e.g. “the same area as the restaurant”
shown in Figure 1 refers to the value “center” for restaurant-area.
The exact value “center” does not appear in the corresponding turn
for hotel-area but refers to a previous correlated turn. Therefore,
the agent needs to further infer the existence of co-reference and
recursively obtain the corresponding shared value.

In this work, we formulate dialogue state tracking in multi-
domain setting as Recursive Inference (ReInf) mechanism. As
shown in Figure 1, the agent first forms queries for specific do-
main slots in state. Specifically, we construct two types of queries:
multiple choice queries with limited number of value options and
open-vocabulary queries which have a large or infinite number of
value options. With the query, it infers whether it can ground on
the most recent turn for value generation. If true, it will detect the
value sharing slots and recursively infer the shared value to help
the final value generation; If not, the agent will reversely review the
former turns in dialogue history. The reverse review termination is
that the agent detects value sharing which calls for query update,
or it has backtracked to the beginning of dialogue history. With
the turns found, we implement two versions of ReInf. One imple-
mentation can be end-to-end trained based on copy mechanism
over BERT outputs. The other implementation consists of separate
components where the generation module takes advantage of the
pre-training model GPT-2 for value generation. Extensive experi-
ments on the public large-scale dataset MultiWOZ 2.1 demonstrate
the effectiveness of our proposed method. Our main contributions
are concluded as follows.
• We propose a novel Recursive Inference (ReInf) strategy
for multi-domain DST in task-oriented agents, pointing out
its longing for accurate evidence finding.
• Instead of assuming independence among slots as previous
works, we capture the potential dependencies across slots to
handle the co-reference and value-sharing problem.
• We carry out extensive experiments and achieve state-of-the-
art performance compared to other methods. The qualitative
results also indicate that our tracker obtains reliable turn
and slot reference during the recursive process.

2 RELATEDWORK
2.1 Ontology-based v.s. Open-vocabulary based
Early DST models operate on a fixed ontology and perform predic-
tion over a pre-defined set of slot-value pairs. They rely on hand-
crafted features [26, 27], use convolutional neural networks [16],
and try to enhance scalability [17–19, 34, 35]. Although performed
well, these methods are hard to apply to more complex datasets
or scenario such as multi-domain setting. It is often difficult to
obtain a complete ontology for a task or domain. The idea of fixed
ontology is also not sustainable as in real world applications they
are subject to constant change. Therefore, recent approaches tend
to be open-vocabulary based [4, 12, 31]. In general, we can organize
them into span-based and generation-based methods. In span-based
methods, they often treat DST as a machine reading comprehension
problem. With dialogue history being the context and domain slot
as the query, it extracts text span in dialogue history as the answer
[4, 32, 36]. For instance, [32] applies an attention-based RNN with

a pointer mechanism to extract values from the context. Such ap-
proach has its limitations. As mentioned in [33], there are many
expressible values not found verbatim in the input, but rather men-
tioned implicitly, or expressed by a variety of rephrasings. Thus,
they propose a hybrid mechanism to extract value or classify over
candidates at the same time. [6] further predict values for slots by
making use of three copy strategies. It combines the advantages
of span-based methods and memory methods to avoid the use of
value picklists.

An alternative to span-based methods is the value generation-
based methods. [10, 31] propose to use an encoder-decoder archi-
tecture with copy mechanism to generate dialogue state values,
which combines the distributions over a predefined vocabulary
and the vocabulary of current dialogue history. [9] applies a simi-
lar mechanism for value generation, but takes the previous turn’s
dialogue state and the current turn utterances as inputs. Relying
on the good performance of pre-trained, open domain language
models such as GPT-2, [8] uses a single causal language model to
train as a single sequence prediction problem, and has achieved the
state-of-the-art performance. In this work, we also take advantage
of the powerful GPT-2 in generation setting. However, instead of
blindly relying on the whole dialogue history, we aim to accurately
find the related turns containing evidence and leverage the slot
correlations to generate the values.

2.2 History-based v.s. Turn-by-Turn based
Depending on the inputs to models, we can organize existing meth-
ods to history-based and turn-by-turn based. Most of current works
apply the former scheme [4, 5, 11, 31]. They take the whole or
window-sized dialogue history as input to recurrent neural net-
works or transformer models. For example, HJST considers the
full dialogue history using a hierarchical recurrent neural network
[5, 25]. More efforts concatenate different turns of dialogue his-
tory into a long sequence while use recurrent neural networks
such as Bi-LSTM or RNN to encode it such as [4, 31]. There are
also works inputting the whole history into BERT such as [33].
However, treating the whole dialogue history as a long sequence
ignores the interactive nature of conversation. It also becomes hard
to capture the user requirement updates during the conversation
and the correlations among slots.

In order to capture the interactive nature of dialogue and im-
prove the computational efficiency, there is another line of work
in turn-by-turn style. Generally speaking, such methods take the
previous turn’s belief state and the current turn utterances as input
to generate new dialogue state [1, 20]. For example, [1] leverages
BERT model to extract slot values for each turn, then employs a
rule-based update mechanism to track dialogue states across turns.
[20] encodes previous dialogue state and current turn utterances
using Bi-LSTM, then hierarchically decodes domains, slots and val-
ues one after another. At the same time, [9] encodes these inputs
with BERT model while predicts operation gates and generates pos-
sible values for each slot. Similarly, [13] proposes to incrementally
infer new dialogue state from previous dialogue state and newly
extracted turn results via BERT with the help of database knowl-
edge. However, all these methods naturally suffer from the error
accumulation problem as the errors in the previous dialogue state
will largely affect the later turns’ results.
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In this work, we argue that both whole history-based and turn-
by-turn based methods are not good enough. Since conversations
are changing in domain and user requirements frequently, it would
be more natural to selectively review the dialogue history like hu-
man during the conversation. Moreover, most of current works
treats different domain slots relatively independently. However, we
observe that fluent slot correlations such as slot co-references can
benefit model performance.

3 METHOD
In this section, we formally introduce the multi-domain dialogue
state tracking task and our proposed Recursive Inference (ReInf)
approach. The task of multi-domain dialogue state tracking is
defined as follows. Formally, we represent a dialogue 𝑋 as 𝑋 =

{𝑈 𝑎1 ,𝑈
𝑢
1 , · · · ,𝑈

𝑎
𝑇
,𝑈𝑢
𝑇
}, where 𝑈 𝑎𝑡 is the agent utterance in turn 𝑡

and 𝑈𝑢𝑡 is the user utterance in turn 𝑡 . Each turn 𝑡 is associated
with a dialogue state 𝑌𝑡 which is the target that our model needs
to predict. It is a set of (domain, slot, value) tuples. Each tuple in
𝑌𝑡 represents that, up to the current turn 𝑡 , a slot 𝑠 of domain 𝑑 ,
which takes the value 𝑣 has been provided in the interaction. In the
multi-domain DST, there are several domains. Each domain 𝑑 has
its slots, and each slot 𝑠 has its possible value candidates 𝑉 𝑠 . For
example, the hotel domain has a slot named price range which can
take possible values like moderate, cheap, and expensive. Some
slots do not have pre-defined values, i.e.,𝑉 𝑠 is missing in the domain
ontology. For example, the taxi and train domains have slots such as
arrive time and leave time which are hard to enumerate all possible
values. Following the convention of MultiWOZ 2.0 and MultiWOZ
2.1, we use the term “slot” — 𝑠 to refer to the concatenation of a
domain name and a slot name, such as hotel-price range.

Next, we first provide an overview of ReInf in Section3.1, fol-
lowed by Section 3.2 introducing its MATCH, SHARE and GEN
modules. Different versions of ReInf are given in Section 3.2.

3.1 Recursive Inference

Algorithm 1: Recursive Inference (ReInf)
Function ReInf(𝑋𝑡 , 𝑠 , 𝑡 , 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠):

if 𝑡 < 1 then
return 𝐺𝐸𝑁 (𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠, 𝑠) // reversely reviewed all turns

𝑐𝑜𝑛𝑓 𝑖 ← 𝑀𝐴𝑇𝐶𝐻 (𝑈 𝑎𝑡 ,𝑈𝑢𝑡 , 𝑠) // test the current turn

if confi then
/* feel confident at this turn */

𝑆𝑆 ← 𝑆𝐻𝐴𝑅𝐸 (𝑈 𝑎𝑡 ,𝑈𝑢𝑡 , 𝑠) // get shared slots

foreach 𝑠 ′ ∈ 𝑆𝑆 do
𝑉𝑉 ←ReInf(𝑋𝑡−1, 𝑠 ′, 𝑡 − 1, 𝜙) // get value recursively

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠 ← ([𝑈 𝑎𝑡 ,𝑈𝑢𝑡 ], 𝑆𝑆,𝑉𝑉 ) // add to evidences set

/* stop reverse if sharing slot is detected or have obtained enough evidences */

if 𝑠 ′ ≠ 𝑛𝑢𝑙𝑙 or |𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠 | > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
return 𝐺𝐸𝑁 (𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠, 𝑠)

/* recursively review former turns */

𝑡 ′ ← 𝑡 − 1
return ReInf(𝑋𝑡 ′ , 𝑠 , 𝑡 ′, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠)
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Figure 2: An abstract view of Recursive Inference mecha-
nism. The down-to-up direction (bashed blue) represents re-
cursive call over turns (consists of system utterance |<S>|
and user utterance |<U>|). It not only includes reverse review
of turns, but also captures recursive inference of value for
shared slots 𝑄∗𝑠 .

First of all, the overall structure of the proposed Recursive Infer-
ence mechanism (ReInf) is shown in Algorithm 1. As illustrated, 𝑡
is the present turn for which the model needs to predict dialogue
state and 𝑋𝑡 denotes the dialogue history till the 𝑡-th turn. Here
𝑠 is a specific slot our tracker needs to predict value for. Given
any slot 𝑠 , our state tracker will first construct a question 𝑄𝑠 and
test whether it matches with the most recent turn utterances for
evidence finding (more details will be given in Section 3.2). If not,
our tracker will reversely review former turns. This process will be
kept executing until the tracker detects value sharing, has obtained
enough evidences, or has backtracked to the beginning of dialogue.
If our tracker finds a confident turn 𝑡𝑝 , it will first find the slots
that might share value with 𝑠 , and recursively find the value for
each shared slot 𝑠 ′ based on the new questions 𝑄𝑠′ and the subset
of dialogue history before this turn. It then generates the value for
slot 𝑠 based on the turn utterances found and shared values.

In addition, we give a high level illustration of Recursive Infer-
ence mechanism (ReInf) in Figure 2. Intuitively, all the switches on
both the trunk and branches are initially open (i.e., turned off). Our
ReInf is recursively called from the present to the past, closing the
switch on the trunk one by one until the recursion terminates. The
switches on the trunk decide whether to further review previous
turns. At the same time, our ReInf also closes the switch on branches
when value sharing is detected. These switches on branches decide
whether there exist shared slots that need to further predict value
for these slots recursively. When the recursion termination con-
dition is met, we unroll the process from the past to present and
finally predict the value for the current slot.

In order to achieve the recursive inference algorithm, we further
design three modules, i.e., MATCH, SHARE and GEN. Generally
speaking, MATCH module asserts the recursion termination condi-
tion and pinpoints the evidence turns for value generation. SHARE
module infers the slots that might share value with the current
slot 𝑠 based on the turn utterances found. GEN module generates
the value for specific domain slots and considers various language
phenomena such as co-reference and value sharing.
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3.2 Neural Modules

Algorithm 2:MATCH Module
Function MATCH(𝑈 𝑎𝑡 ,𝑈

𝑢
𝑡 , 𝑠):

𝑄𝑠 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑠)
q𝑠 ← 𝑓𝐶𝐿𝑆

𝐵𝐸𝑅𝑇
(𝑄𝑠 )

H𝑈 ← 𝑓𝐵𝐸𝑅𝑇 ( [𝑈 𝑎𝑡 ,𝑈𝑢𝑡 ])
𝜶 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑈 · (q𝑠 )𝑇 ) // the query attends to utterances

𝑐𝑜𝑛𝑓 𝑖 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑚𝑎𝑡𝑐ℎ · (𝜶 ·H𝑈 )𝑇 )
return confi

3.2.1 MATCH Module. The MATCH module is designed to deter-
mine whether the current turn contains evidence for value. Specif-
ically, we treat dialogue state tracking as a question answering
problem which can be solved by machine reading methods. Thus,
MATCH module treats the slot 𝑠 as query and predicts whether a
turn of utterances𝑈 𝑎𝑡 ,𝑈

𝑢
𝑡 contains evidence of appropriate value.

Inspired from [36], 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑠) generates question 𝑄𝑠 for the
slot 𝑠 . For each slot 𝑠 where there exists a predefined value set𝑉 𝑠 , we
construct a question 𝑄𝑠 = {𝑠,𝑉 𝑠 , 𝑑𝑜𝑛′𝑡 𝑐𝑎𝑟𝑒, 𝑛𝑜𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑}. For
example, the constructed question for the slot ‘hotel-price range’
will be 𝑄𝑠 = {ℎ𝑜𝑡𝑒𝑙, 𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑛𝑔𝑒, 𝑐ℎ𝑒𝑎𝑝,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒, 𝑑𝑜𝑛′𝑡
𝑐𝑎𝑟𝑒, 𝑛𝑜𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑}. It represents the following natural language
question: “Is the ‘price range’ of the ‘hotel’ mentioned? If so, which
of the following option is correct: A) cheap, B) moderate, C) ex-
pensive, D) don’t care.” In the case that 𝑉 𝑠 is not available such
as for slots like ‘hotel-name’ or ‘taxi-arrive time’, we construct
the question 𝑄𝑠 = {𝑠, 𝑑𝑜𝑛′𝑡 𝑐𝑎𝑟𝑒, 𝑛𝑜𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑}. For example,
the constructed question for the slot ‘taxi-arrive time’ will be 𝑄𝑠 =
{𝑡𝑎𝑥𝑖, 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡𝑖𝑚𝑒, 𝑑𝑜𝑛′𝑡 𝑐𝑎𝑟𝑒, 𝑛𝑜𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑}. It represents the nat-
ural language question “Is the ‘arrive time’ of ‘taxi’ mentioned?
If so, what is the ‘arrive time’ preferred?”. With the constructed
question 𝑄𝑠 , we obtain its vector representation q𝑠 via the [CLS]
position’s output from a BERT encoder. Meanwhile, we also get the
contextualized representations of wordsH𝑈 = [h1,h2, · · · ,h𝐿] via
BERT encoder using concatenated turn utterances [𝑈 𝑎𝑡 ,𝑈𝑢𝑡 ] with
length 𝐿 of words.

𝜶 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑈 · (q𝑠 )𝑇 ) . (1)

confi = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑚𝑎𝑡𝑐ℎ · (𝜶 ·H𝑈 )𝑇 ). (2)

In the MATCH module, it first takes the question feature q𝑠
to attend over the utterance words H𝑈 as in Equation 1. Then, it
weighted sums together the evidence from utterance words and pre-
dicts whether the turn contains value information for the question
or not as in Equation 2. The result confi ∈ R2 indicates the cer-
tainty and uncertainty of the turn containing evidence. We regard
the value in first dimension as the confidence score. TheW𝑚𝑎𝑡𝑐ℎ

is a weight matrix for fully connected layer. For ease of illustration,
the bias terms are ignored.

3.2.2 SHARE Module. The SHARE module detects the shared slots
for slot 𝑠 based on the turn utterances 𝑈 𝑎𝑡 ,𝑈

𝑢
𝑡 . The 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑠)

function provides candidate sharing slots. For example, given the 𝑠
as ‘hotel-area’, it will return candidates ‘restaurant-area’ and ‘at-
traction area’. We obtain this function via statistics in training data.

Algorithm 3: SHARE Module
Function SHARE(𝑈 𝑎𝑡 ,𝑈

𝑢
𝑡 , 𝑠):

𝑆 ′ ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑠)
foreach 𝑠 ′ ∈ 𝑆 ′ do

q𝑠′ ← 𝑓𝐶𝐿𝑆
𝐵𝐸𝑅𝑇

(𝑄𝑠′)
H𝑈 ← 𝑓𝐵𝐸𝑅𝑇 ( [𝑈 𝑎𝑡 ,𝑈𝑢𝑡 ])
𝜷 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑈 · (q𝑠′)𝑇 ) // the query attends to utterances

𝑠ℎ𝑎𝑟𝑒 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑠ℎ𝑎𝑟𝑒 · (𝜷 ·H𝑈 )𝑇 )
if share then

𝑆𝑆.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠 ′)
return 𝑆𝑆

Basically, we harvest all the slot pairs that have shared value in
the same dialogue. Then, for each candidate slot 𝑠 ′, we generate
its question representation q𝑠′ and attend to the utterance repre-
sentationsH𝑈 . The 𝜷 refers to the attention weights. The attended
representations will go through a fully connected layer with pa-
rameter W𝑠ℎ𝑎𝑟𝑒 and predict whether 𝑠 ′ shares value with 𝑠 or not
(as in Equation 3). For example in Figure 1, for the candidate slot
‘restaurant-area’, the turn utterances [𝑈 𝑎5 ,𝑈

𝑢
5 ] contain the phrase

same area as the restaurant. Its attention weight will be large and
help to predict ‘restaurant-area’ as a shared slot.

share = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑠ℎ𝑎𝑟𝑒 · (𝜷 ·H𝑈 )𝑇 ). (3)

The result share ∈ R2 indicates whether 𝑠 ′ shares value with 𝑠 or
not. We regard the value in first dimension as the probability score
of sharing. In Algorithm 3, 𝑆𝑆 refers to the set of all slots that share
value with 𝑠 .

Algorithm 4: GEN Module
Function GEN(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠 , 𝑠):

q𝑠 ← 𝑓𝐶𝐿𝑆
𝐵𝐸𝑅𝑇

(𝑄𝑠 )
H𝑈 ← 𝑓𝐵𝐸𝑅𝑇 (𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠.𝑈 ) // concat utters in evidences

foreach (𝑠 ′, 𝑣 ′) ∈ (𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠.𝑆𝑆, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠.𝑉𝑉 ) do
𝑆𝑡𝑟 ← [𝑆𝑡𝑟, 𝑠 ′, 𝑣 ′]

H𝑆𝑡𝑟 ← 𝑓𝐵𝐸𝑅𝑇 (𝑆𝑡𝑟 )
H← [H𝑈 ,H𝑆𝑡𝑟 ] // concat uttrs and shared slot value string matrix

/* generate the value word by word using copy mechanism */

while e𝑘 does not refer [EOS] token do
g𝑘 ← 𝐺𝑅𝑈 (g𝑘−1, e𝑘 )
p𝑣𝑜𝑐𝑎𝑏
𝑘

← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (E · (g𝑘 )𝑇 )
p𝑐𝑜𝑝𝑦
𝑘

← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H · (g𝑘 )𝑇 )
c𝑘 ← p𝑐𝑜𝑝𝑦

𝑘
·H

𝜸 ← 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑐 · [g𝑘 , e𝑘 , c𝑘 ])
p𝑔𝑒𝑛
𝑘
← 𝜸 · p𝑣𝑜𝑐𝑎𝑏

𝑘
+ (1 −𝜸 ) · p𝑐𝑜𝑝𝑦

𝑘

return

3.2.3 GEN Module. The GEN module is designed to predict the
value for slot 𝑠 given the found turn utterances and shared values.
We apply the soft gated copy mechanism [23] to get the final output
distribution p𝑔𝑒𝑛

𝑠,𝑘
over the candidate value tokens for 𝑠 . We generate
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the value word by word until the [EOS] token in the way similar to
[9]. Specifically, we use Gated Recurrent Unit (GRU) [2] decoder
like [31]. The GRU recurrently updates the hidden state g𝑠,𝑘 by
taking a word embedding e𝑠,𝑘 as the input until the [EOS] token is
predicted:

g𝑠,𝑘 = 𝐺𝑅𝑈 (g𝑠,𝑘−1, e𝑠,𝑘 ) . (4)

It is initialized with g𝑠,0 = 𝑡𝑎𝑛ℎ(W𝑝𝑜𝑜𝑙 · (h𝑈 )𝑇 ) and e𝑠,0 = q𝑠 ,
where h𝑈 is the [CLS] position’s output vector from the BERT
model with concatenated utterances as input. g𝑠,0 can be seen as
the aggregated sequence representation of the utterances obtained
from a feed-forward layer with learnable weightsW𝑝𝑜𝑜𝑙 .

As the decoder works on, its hidden state is first transformed to
the probability distribution over the vocabulary as in Equation 5,
where E is the word embedding matrix shared across the encoder
and the decoder,

p𝑣𝑜𝑐𝑎𝑏
𝑠,𝑘

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (E · (g𝑠,𝑘 )𝑇 ) . (5)

At the same time, the hidden state is used to compute the history
attention p𝑐𝑜𝑝𝑦

𝑠,𝑘
as in Equation 6 over the encoded sequenceH that

contains utterances and shared slot values:

p𝑐𝑜𝑝𝑦
𝑠,𝑘

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H · (g𝑠,𝑘 )𝑇 ). (6)

The final output distribution p𝑔𝑒𝑛
𝑠,𝑘

is the weighted-sum of two dis-
tributions

p𝑔𝑒𝑛
𝑠,𝑘

= 𝜸 · p𝑣𝑜𝑐𝑎𝑏
𝑠,𝑘

+ (1 −𝜸 ) · p𝑐𝑜𝑝𝑦
𝑠,𝑘

,

𝜸 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑐 · [g𝑠,𝑘 , e𝑠,𝑘 , c𝑠,𝑘 ]),

where W𝑐 is a learnable weight matrix and c𝑠,𝑘 = p𝑐𝑜𝑝𝑦
𝑠,𝑘

·H is the
context vector.

3.3 Two Implementation Versions of ReInf
The core of Recursive Inference is to reversely review turns for
finding confident evidences and recursively obtain shared slot val-
ues for final value generation. With the copy-based GEN module
illustrated in Section 3.2, ReInf can be implemented and trained
end-to-end. At the same time, motivated by the strong generation
performance of GPT-2, we implement a new version of ReInf by
realizing GEN with pre-trained GPT-2 model. Thus, this version
consists of separate components: MATCH and SHARE predict turn
and shared slots for GEN, while GEN focuses on value generation.

3.3.1 ReInf in End-to-End Style. In the end-to-end implementation
of ReInf, we train theMATCH, SHARE and GENmodules separately
first and fine-tune them together for each training instance (𝑋𝑡 , 𝑌𝑡 ).
We show the objective for one slot 𝑠 here. We denote 𝑡𝑠 as the
ground truth turn index, 𝑆𝑆 as the shared slots ground truth and
𝑦𝑠 as the ground truth value. We use o𝑖 as the two dimensional
one-hot vector for turn ground truth for the 𝑖-th turn. Then o𝑡𝑠
will be [1,0] while others being [0,1]. The objective for MATCH
is as in Equation 7. For the 𝑗-th shared slot in 𝑆𝑆 , we construct
one-hot vector as v𝑗 , thus the objective for SHARE is the average as
in Equation 8. We use 𝐾𝑠 as the number of tokens in 𝑦𝑠 and y𝑠,𝑘 as
the one-hot vector for the ground truth token at the 𝑘-th decoding
step. The objective function for GEN is the average of the negative

log-likelihood in Equation 9.

𝐿𝑀𝐴𝑇𝐶𝐻 = − 1
𝑡 − 𝑡𝑠 + 1

𝑡∑
𝑖=𝑡𝑠

𝑙𝑜𝑔(confi𝑖 · (o𝑖 )𝑇 ), (7)

𝐿𝑆𝐻𝐴𝑅𝐸 = − 1
|𝑆𝑆 |

∑
𝑗=𝑆𝑆𝑖

𝑙𝑜𝑔(share𝑗 · (v𝑗 )𝑇 ), (8)

𝐿𝐺𝐸𝑁 = − 1
𝑆

∑
𝑠∈𝑆
[ 1
𝐾𝑠

𝐾𝑠∑
𝑘=1
(y𝑠,𝑘 )𝑇 𝑙𝑜𝑔(p

𝑔𝑒𝑛

𝑠,𝑘
)] . (9)

Therefore, the final joint loss 𝐿𝑗𝑜𝑖𝑛𝑡 for the slot 𝑠 of the sample
to be minimized is the sum of the losses mentioned above:

𝐿𝑗𝑜𝑖𝑛𝑡 = 𝐿𝑀𝐴𝑇𝐶𝐻 + 𝐿𝑆𝐻𝐴𝑅𝐸 + 𝐿𝐺𝐸𝑁 . (10)

3.3.2 ReInf with Separate Components. In the realization of ReInf
with separate components, we first train the MATCH and SHARE
modules together as in Equation 10 but without 𝐿𝐺𝐸𝑁 . We then
train the GPT-2 based GEN module separately. We form each single
training sequence as 𝑧 = [𝑈 𝑎𝑡𝑠 ,𝑈

𝑢
𝑡𝑠
, 𝑆𝑆1,𝑉1, · · · , 𝑆𝑆 |𝑆𝑆 |,𝑉 |𝑆𝑆 |, 𝑠, 𝑣𝑎𝑙𝑢𝑒],

where 𝑣𝑎𝑙𝑢𝑒 is the target the GEN aims to generate. We also add
specific separator tokens among different types of elements in 𝑧.
Such formalization allows us to model the joint probability over
the sequence 𝑧, i.e., constructing a language modeling goal to learn
𝑝 (𝑧). By factorizing this distribution using the chain rule of prob-
ability 𝑝 (𝑧) = ∏ |𝑧 |

𝑖=1 𝑝 (𝑧𝑖 |𝑧<𝑖 ), we fine-tune GPT-2 network with
parameters \ to minimize the negative log-likelihood over a set 𝑍
of such samples,

𝐿𝐺𝐸𝑁 = −
∑
𝑧∈𝑍

|𝑧 |∑
𝑖=1

𝑙𝑜𝑔 𝑝\ (𝑧𝑖 |𝑧<𝑖 ) .

3.3.3 Filter for Improving Efficiency. As in belief state 𝑌𝑡 , most of
the slots will get the value not mentioned. To enhance the efficiency
of our model, we further design a gate mechanism similar to [31]
to filter out such slots first, for which we can skip the ReInf process
and predict the value not mentioned directly. We apply the separate
training objective as the cross entropy loss computed between the
predicted slot gate p𝑔𝑎𝑡𝑒𝑠 and the true one-hot label q𝑔𝑎𝑡𝑒𝑠 as below:

𝐿𝑔𝑎𝑡𝑒 = −𝑙𝑜𝑔(p𝑔𝑎𝑡𝑒𝑠 · (q𝑔𝑎𝑡𝑒𝑠 )𝑇 ),

where for gate prediction, we calculateH𝑋𝑡
= 𝑓𝐵𝐸𝑅𝑇 (𝑋𝑡 ) as contex-

tualized word representations for dialogue history, and then apply
query attention to classify whether the slot should be filtered,

𝜼 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑋𝑡
· (q𝑠 )𝑇 ),

p𝑔𝑎𝑡𝑒𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑔𝑎𝑡𝑒 · (𝜼 ·H𝑋𝑡
)𝑇 ).

In addition, we also add an auxiliary task to force the filter
to learn the correlation between slots and dialogue domain, by
applying the cross entropy loss between the predicted domain d𝑋𝑡

of dialogue history and the true label vector d̂𝑋𝑡
,

𝐿𝑑𝑜𝑚 = −𝑙𝑜𝑔(d𝑋𝑡
· (d̂𝑋𝑡

)𝑇 ),
where the domain classification is done with a softmax layer on top
of h𝑋𝑡

= 𝑓𝐶𝐿𝑆
𝐵𝐸𝑅𝑇

(𝑋𝑡 ) which takes the [CLS] position output vector
from BERT,

d𝑋𝑡
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑑𝑜𝑚 · (h𝑋𝑡

)𝑇 ).
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4 EXPERIMENTS
4.1 Datasets and Setup
We carry out experiments on MultiWOZ 2.1 [3], which is a recently
released multi-domain dialogue dataset spanning seven distinct
domains and containing over 10,000 dialogues. As compared to
the old version MultiWOZ 2.0, it fixed substantial noisy dialogue
state annotations and dialogue utterances that could negatively
impact the performance of state-tracking models. In MultiWOZ 2.1,
there are 7 domains: attraction, restaurant, hotel, train, taxi, hospital
and police. We follow the original training, validation and testing
split and directly use the DST labels. Since the hospital and police
domain have very few dialogues (10% compared to others) and only
appear in the training set, we only use the other five domains in our
experiment. In total, there are 30 domain-slot pairs and over 4,500
possible values, which is different from existing standard datasets
like WOZ [28] and DSTC2 [7] – with less than 10 slots and only a
few hundred values.

4.2 Training Details
We adopt the pretrained bert-base-uncased version of BERT and
initialize the learning rate for fine-tuning as 3𝑒-5. The hidden size of
the decoder is the same as that of the encoder, which is 768. We use
BertAdam as our optimizer and use greedy decoding for slot value
generator. For GPT-2, the input to the model is tokenized with pre-
trained BPE codes [24] associated with DistilGPT2 [22], a distilled
version of GPT-2. Similar to SimpleTOD, we use default hyperpa-
rameters for GPT-2 and DistilGPT2 in Huggingface Transformers
[30]. Sequences longer than 1024 tokens are truncated.

4.3 Evaluation Metrics
Similar to [31], we adopt the joint accuracy to evaluate the per-
formance on multi-domain DST. The joint accuracy compares the
predicted belief states to the ground truth at each turn 𝑡 . The predic-
tion is considered correct if and only if all values exactly match the
ground truth values. Besides it, we also report the turn prediction
accuracy of our method. It evaluates the ability of our model in
finding turns that contain useful evidence. For each slot, we also
provide its overall error rate to show detailed comparison.

4.4 Comparing Models
We denote the two versions of ReInf implementation as ReInf_𝐸𝐸
and ReInf_𝑆𝐶 , which corresponds to ReInf in end-to-end style and
ReInf with separate components respectively. They are compared
with the following models: DSTRead [4], TRADE [31], SOM [9],
COMER [20], DS-DST [33], TripPy [6] and SimpleTOD [8]. More
details about these methods are given below:

– DSTRead [4]: It treats dialogue state tracking as a reading
comprehension problem. Given the whole dialogue history,
it learns to extract slot values in text spans. It exploits con-
textual word embeddings and explicitly tracks whether a
slot value should be carried over to the next turn.

– TRADE [31]: It concatenates the whole dialogue history
as input and uses a generative state tracker with a copy
mechanism to generate value for each slot separately.

Comparing Methods Joint Accuracy
DSTRead 0.364
TRADE 0.456
SOM 0.530
COMER 0.362
DS-DST 0.533
TripPy 0.553
SimpleTOD 0.557
ReInf_𝐸𝐸 0.520
ReInf_𝑆𝐶 0.583

Table 1: Themulti-domainDST evaluation onMultiWOZ2.1
dataset. The proposed ReInf achieves the best performance.

– SOM [9]: It works in turn-by-turn style by considering di-
alogue state as an explicit fixed-sized memory, and adopts
a selectively overwriting mechanism for generating values
with copy mechanism.

– COMER [20]: It also takes current turn utterances with
previous turn belief state as input. A hierarchical encoder-
decoder structure is applied to generate a sequence of belief
states more efficiently.

– DS-DST [33]: Given the whole dialogue history as input, it
uses two BERT-based encoders and takes a hybrid approach
of predefined ontology-based DST and open vocabulary-
based DST. It defines picklist-based slots for classification
and span-based slots for span extraction like DSTRead [4].

– TripPy [6]: Relying on the whole dialogue history as input,
it makes use of various copy mechanisms to fill slots with
values. Value sharing is considered over the dialogue history.

– SimpleTOD [8]: This is the current state-of-the-art model
on the multi-domain MultiWOZ 2.1 dataset. Based on the
whole dialogue history, it uses a single pre-trained GPT-2
model to fine-tune on all sub-tasks as a single sequence
prediction problem. We use the DST part for comparison.

4.5 Quantitative Results
We first compare our model with a wide range of state-of-the-art
methods. As shown in Table 1, we observe that our method outper-
forms all the other baselines. For example, in terms of joint accuracy
which is a rather strict metric, ReInf_𝑆𝐶 improves the performance
by 10.0% as compared to the state-of-the-art model SOM in turn-by-
turn style. It also improves the performance by 4.67% as compared
to the state-of-the-art model SimpleTOD in history-based style. It
validates our call for accurate evidence finding.

When the whole dialogue history is fed to the models, it tends
to lose focus especially when user requirements changes or slots
with similar value candidates appeared. For methods like DSTRead
and TRADE, RNN models are leveraged to encode the dialogue
history. However, RNN models suffers from the well-known gra-
dient vanishing problem. Since domain in dialogue contents fre-
quently change, information appeared in former turns might be
easily get overwhelmed by later turns. When generating the dia-
logue summary, value for such slots might get misled easily. Indeed,
Transformer-based models are better in learning contextualized
representations, thus more recent works such as DS-DST, TripPy
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Figure 3: Turn prediction accuracy of ReInf_𝑆𝐶 for each slot
that is predicted to have a value.

and SimpleTOD are all based on Transformer models to encode the
whole dialogue history. For example, the DS-DST directly takes in
slot augmented dialogue history while SimpleTOD simply takes in
the long sequence of dialogue history. Although the great strength
of Transformermodels contribute to the better performance of these
methods, blindly working on the whole history indiscriminately
would introduce noise as well as confuse the model, especially in
multi-domain setting.

When working on the most updated turn utterances with previ-
ous turn dialogue states, the model will be largely affected by error
accumulation. For instance, the COMER hierarchically generates
domain, slot and value one after another by taking former turn dia-
logue state as part of the input. When there is any error appeared
in the state, it will be carried to the current state generation. The
SOM method designs a gate to further decide whether to carryover,
delete or update certain slot-value pairs from the former turn. How-
ever, it still cannot avoid the error accumulation conundrum, thus
resulting in lower performance than ReInf.

Note that all the comparing methods do not model the relation
among slots explicitly except the TripPy. It is the first one to ex-
plicitly consider the value sharing among slots. However, it takes
the whole dialogue history as input to predict which slot shares
value with a specific one. There will be much noise to overwhelm
the sharing slot prediction. In our method, we focus on specific
turns to do slot sharing prediction. Also, we make use of statistic
information as a general candidate slots generator which further
helps to reduce noise. We will show later in Subsection 4.6.3 that
the sharing slots obtained are reasonable.

Among all these methods, SimpleTOD is a rather simple and
straight-forward design. However, it achieves the best performance

Figure 4: Slot error rates on the test set for SimpleTOD and
the proposed ReInf (we report the rates for ReInf_𝑆𝐶 here).

Settings Joint Accuracy
all history 0.557
selective turns 0.561
selective turns + recursive share 0.583

Table 2: Ablation study results on selecting turns and recur-
sively inferring values from shared slots.

in baselines. This attributes to the strong capability of pre-trained
GPT-2. We also notice that ReInf_𝐸𝐸 can not beat ReInf_𝑆𝐶 . There
might be two reasons: Firstly, ReInf_𝑆𝐶 implementation takes advan-
tage of the pre-trained GPT-2 model in the GEN module. Secondly,
the encoder of ReInf_𝐸𝐸 is based on pre-trained BERT model while
the decoder is based on GRU, we suspect that such discrepancy
would affect the performance. We report here as a negative example.

4.5.1 Ablation Study. To further investigate the ReInf mechanism,
we carry out ablation study of ReInf_𝑆𝐶 on the selective turns de-
sign and the recursive sharing value design as in Table 2. First of
all, we report the results when using the whole dialogue history
as input. In ReInf_𝑆𝐶 , as the GEN module is separately trained,
when using the whole dialogue history, it actually degrades to the
SimpleTOD model. When we just rely on the turns selected by
MATCH while ignore the other turns, we observe a performance
improvement for the setting selective turns. This is because many
noise information got filtered out. The model will be more focused
on the turns containing the value evidence. Furthermore, we ap-
pend the shared slots and value to the input, we observe a further
improvement on the selective turns+recursive share setting. This is
as expected since sometimes the user will not mention the exact
value for a specific slot such as attraction-area, but mention as same
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U: I want to find a moderately priced restaurant. 

S: …Is there a certain area or cuisine that interests 
you? 
U: Yes …

S: There are 21 restaurants … in the centre of town…
U: I need to know the food type …

S: …. Please repeat in a way that makes sense. 
U: Get me the food type and the post code.

S: …Does that interest you? 
U: … I also need … attractions that have multiple 
sports …, in the same area as the restaurant...

S: The only multiple sports attraction is …
U: No, ... what about architecture attractions?

Q: attraction area
T2

Turn 5
S: … Does that interest you ? 
U: … I also need information on the 
attractions that have multiple sports…
in the same area as the restaurant…

T5

Turn 4
S: … Please repeat in a way that makes ... 
U: Get me the food type and …

Q: restaurant area

T4

Turn 3
S: there are 21 restaurants available 
in the centre of town…
U: I need to know the food type …

Q: restaurant area

T3

T1
Q: attraction area

Turn 6
S: The only multiple sports attraction is …
U: No, ... what about architecture 
attractions?

T6 T6

T5

T6

T4

T5

T6

U: … preferably on the west side of Cambridge, perhaps 
a museum of sorts. 

S: …  recommend Cambridge Book and Print Gallery. 
U: Thanks you , … get me … the entrance fee, too. 

S: …free to enter, and their number …
U: … have you heard of the Hobson House hotel? 

S: The Hobson House hotel is .... book a room? 
U: Yes. please book me a room for 4 nights….

S: Your reservation was successful… 
U: I will need a taxi to take me from the museum to the 
hotel. I am … leaving the museum at 11:15. 

S: look for a black BMW. anything else? 
U: No thanks. Thank you. 

Q: taxi destination

Turn 6
S: Of course! look for a black BMW. 
anything else I can do for you? 
U: No thanks. Thank you .

T6

Turn 5
S: Your reservation was successful… 
U: I will need a taxi to take me from the 
museum to the hotel. I am planning on leaving 
the museum at 11:15. 

Q: taxi destination

T6

Turn 4
S: The Hobson House hotel is ... would you 
like me to book a room? 
U: Yes. please book me a room for 4 nights… 

Q: hotel name

T5

T6

T5

T4

T3

T4

T5

T6

T2

T1

T3

T4

T5

T6

Figure 5: Case study on recursive inference. The filled circles are the turns found by ReInf for specific query slots. Our model
successfully obtains the turns containing value evidence by reversely reviewing the dialogue history. It manages to detect the
sharing value slots and recursively infer its values (the color of query circle changes when sharing slots are detected).

area as the restaurant. By appending the value of restaurant-area to
the input, it actually provides the model with more evidence and
helps GPT-2 to generate value that is not shown in utterances.

Figure 3 shows the accuracy of turn prediction of each slot.
The turn prediction accuracy is based on instances where a slot is
predicted to have a value. Generally speaking, ReInf obtains good
performance on finding turns. However, we also notice that it gets
lower accuracy for several slots related to hotel such as hotel-type.
We suppose that this might be because the value of such slot often
got mentioned several times in different turns. For instance, the
user might first give information about hotel type in a turn, and
later receive hotel name which also indicates the type being hotel.

Figure 4 shows slot error rate of ReInf_𝑆𝐶 and SimpleTOD on the
test set for more detailed comparison. We observe that ReInf_𝑆𝐶
improves over SimpleTOD in most of the slots. The most obvious
ones are the name slots, such as restaurant-name, attraction-name
and hotel-name. We suspect that the main reason is that these
slots get open-vocabulary values and the length of these values is
relatively longer than other slots. Providing with dense selected
turns instead of the whole dialogue history while also enriched
with shared values, the GPT-2 model will be more focused and
would learn to generate these better. We notice that slots like ‘taxi
destination’ and ‘taxi departure’ get worse. The reason behind this
is that they often appear in the same turn (85.6% of the times, see
the second example in Figure 5). Therefore, in shared slots, both
attraction name and hotel name will be found.

4.6 Qualitative Results
4.6.1 Turn Prediction Accuracy and Slot Error Analysis. In this Sub-
section, we first demonstrate the capability of the proposed ReInf in

accurate turn finding and slots sharing via recursion cases. We then
provide details of statistics comparisons in more general sense.

4.6.2 Recursion Case Study. In Figure 5, two examples are shown
to demonstrate how the proposed ReInf finds the correct turns and
sharing value slots of a given slot. In the first example on the top,
the model needs to generate value for the slot attraction-area given
six turns of utterances. Starting from the Turn 6, it reversely checks
the turns until it gets confident that Turn 5 contains information
about attraction-area. However, the user’s utterance in Turn 5 refers
to another slot for the exact value. Therefore, the query of interest
is updated to restaurant-area, and then ReInf recursively traverses
in history to find the Turn 3 eventually. The model’s prediction of
the new query restaurant-area will be used for the value generation
of attraction-area, and our model is able to correctly predict ‘center’
in the this example. In the second example on the bottom, the model
starts with query about taxi-destination. It finds Turn 5. However,
in Turn 5 the user also refers to the hotel mentioned before. In
order to find the hotel-name, the model steps back to history and
finds the hotel-name in Turn 4, which will then be used for the
prediction of taxi-destination. Through these two examples, the
model’s ability to recursively infer along dialogue history is clearly
shown. It largely simulates human behavior when attempting to
find a value of a slot. Note that in the reversely reviewing process
and recursive inference process, the model will end its searching
process as long as enough evidence turns are found or sharing
slots are detected. It is not necessary to traverse all the turns in the
dialogue history laboriously. For instance, it will stop in the Turn 3
for the first example and stop in the Turn 4 for the second example
with evidence 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 being 1.
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Figure 6: Comparison of general statistics of evidence position between predicted results and the ground truth. We search in
the sequence of system act, system utterance, user utterance.

4.6.3 Comparison of General Statistics. One might argue that sev-
eral special examples are not representative enough to support the
model’s overall validity. We thus provide some general statistics
to compare the predicted results of ReInf_𝑆𝐶 and the ground truth.
First of all, in order to show whether the proposed model generally
finds the correct turns, we count the statistics of the value gener-
ated in the position of found turns. We then compare the statistics
with the ones harvested from ground truth results. We examine
the value location of a slot, and determines whether the value of
a slot appears first in system acts, in system utterance, or in user
utterance. In the test set, around 79% of ground-truth values of slots
come from user utterance, which is reasonable as the user is often
taking initiatives to provide information. We show the comparison
over all slots and some example slots in Figure 6. As shown in the
pie charts of ‘all slots’, for predictions of our model, the distribution
of value locations are generally similar to that of the ground truth.
Only the ratio for ‘none’ is relatively higher. This is reasonable
as our model gets wrong turn prediction sometimes. Under such
cases, we might not be able to find the value in the turn. In addition
to statistics of ‘all slots’, there are also breakdowns according to
individual slots with different patterns. For instance, the value of
hotel-price range is mostly provided by the user, and our models’
predictions follow a similar pattern. In contrast, the evidence for
hotel-name can be retrieved from both system part or user part.
The predictions by our model also follow a similar pattern that
the evidence is more evenly distributed among different locations
in a turn. Lastly, for the slot train-book people, both system and
user utterance are equally likely to contain evidence. This might
be because the system might repeat order details when asking for
confirmation. We also observe similar patterns for this. Overall, our
model is able to utilize information from different parts of a turn
and generate values based on evidence found.

We further investigate the similarity between frequency of our
predictions on value-sharing slots and the ground-truth statistics,
as shown in Figure 7. If a slot shares the same value with another
slot in a turn, then it would be considered a value-sharing instance.

Figure 7: Comparison of general statistics of slots sharing
between the ground truth and predicted results.
In our model’s prediction, around 8.6% of the time a slot shares
value with another slot in the same turn, which is comparable to
the 9.4% of ground-truth frequency. We therefore expect that our
model has generally learnt to detect the value sharing situation
well and this provides a good base for it to copy value from shared
slots.

5 CONCLUSION
We have demonstrated that our approach can handle challenging
multi-domain DST task. We designed a Recursive Inference mecha-
nism (ReInf) consisting of three straight-forward neural modules
that determine the recursion at run-time. Our dialogue state tracker
reversely reviews the slot-related history to find the turns contain-
ing evidence for value generation, and recursively infers values for
slots that share value with the current slot. In order to investigate
the various effect of current Transformer models on ReInf, we real-
ize two implementations of ReInf: one with the copy mechanism
for value generation based on BERT outputs in end-to-end style
while the other simply based on the pre-tained GPT-2 via separate
components. Experimental results on the large-scale multi-domain
dataset MultiWOZ 2.1 demonstrate that our proposed model not
only achieves state-of-the-art performance, but also obtains accu-
rate turn findings, reasonable slot recursion and explainable value
generation. Moving forward, we are going to investigate possible
ways to get the turn finding and GPT-2 part trained together to
facilitate downstream tasks such as response generation [14, 15].
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