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Abstract

Dialogue Aspect-based Sentiment Quadruple (DiaASQ) is a
newly-emergent task aiming to extract the sentiment quadru-
ple (i.e., targets, aspects, opinions, and sentiments) from con-
versations. While showing promising performance, the prior
DiaASQ approach unfortunately falls prey to the key crux
of DiaASQ, including insufficient modeling of discourse fea-
tures, and lacking quadruple extraction, which hinders further
task improvement. To this end, we introduce a novel frame-
work that not only capitalizes on comprehensive discourse
feature modeling, but also captures the intrinsic interaction
for optimal quadruple extraction. On the one hand, drawing
upon multiple discourse features, our approach constructs a
token-level heterogeneous graph and enhances token interac-
tions through a heterogeneous attention network. We further
propose a novel triadic scorer, strengthening weak token re-
lations within a quadruple, thereby enhancing the cohesion
of the quadruple extraction. Experimental results on the Di-
aASQ benchmark showcase that our model significantly out-
performs existing baselines across both English and Chinese
datasets. Our code is available at https://bit.ly/3v27pqA.

Introduction
Aspect-based Sentiment Analysis (ABSA) has garnered
considerable research attention in the field of affective com-
puting (Zhang et al. 2023b). The core of ABSA involves
extracting opinions or sentiment preferences towards spe-
cific aspects from text, forming tasks such as target-oriented
opinion words extraction (Fan et al. 2019), aspect sentiment
triplet extraction (Peng et al. 2020), and aspect sentiment
quad prediction (Zhang et al. 2021a). Regardless of the di-
verse forms of current ABSA research, the primary focus
remains limited to individual text pieces, such as online re-
views. However, in daily interactions, e.g., on social media,
people tend to convey their fine-grained sentiments in the
dialogue format. Due to the intricate nature of dialogue dis-
course, traditional ABSA techniques developed for single-
text might fail to fully capture the richness and depth of sen-
timents within them (Cai, Xia, and Yu 2021; Zhang et al.
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A #1
I've been using the Xiaomi 10 lately and I genuinely
 think it's a pretty solid device.

B #2
I got one, but it hasn't lived up 
to my expectations as Mi 9.

A #3 What seems to be the issue?
Any specific drawbacks?

Emm, it really disappoints me, 
especially the battery life.C #4

Xiaomi 10 

battery life

disappoints

Negative

T

A

O

P

Mi 6

build quality

top notch

Positive

T

A

O

P

D #5

E #6

D #7

It’s fine. But I still miss my last 
phone, Mi 6

I had the Mi 6 and the build
quality was simply top notch.

Hah, glad to see that. I really
love it even years passed.

Figure 1: An example of aspect-based quadruple extraction
in conversation. The item ‘T ’, ‘A’, ‘O’, and ‘P’ denote tar-
get, aspect, opinion, and polarity, respectively. The arraw→
represents the reply relationship in conversation.

2021a). This potential has sparked growing research interest
in ABSA for dialogues, enabling real-world applications.

In light of the promising applications, Li et al. (2023a)
pioneered ABSA analysis in dialogue, introducing the task
of DiaASQ. As illustrated in Figure 1, given a multi-party,
multi-turn dialogue, the task aims to extract the quadruple
formed by target, aspect, opinion, and sentiment polarity.
Meanwhile, to benchmark the DiaASQ task, Li et al. (2023a)
proposed a word-pair-based framework by following prior
quadruple extraction (Zhang et al. 2021a). Although ex-
hibiting promising performance, their model still falls short
of two key limitations, in terms of two crux of DiaASQ,
i.e., discourse modeling and triadic quadruple interaction.
First, compared to previous ABSA in the individual texts,
sentiment-related content of DiaASQ is conveyed through
dialogue flow, necessitating an efficient understanding of
dialogue discourse to extract quadruples. Besides, the ex-
traction process of DiaASQ, which involves detecting three
items and subsequently assigning a sentiment label to them,
presents an urgent demand for triadic interaction between
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quadruples within complex conversational contexts.
Insufficient Discourse Modeling Discourse features play

a pivotal role in the DiaASQ task, especially in cross-
utterance extraction, as exemplified by the first quadruple
in Figure 1. In real-life conversations, individuals frequently
shift focus and express opinions with fluidity. As a result,
it becomes imperative to analyze discourse features and
to thoroughly understand dialogue-level structures. Regret-
tably, Li et al. (2023a) fail to adequately leverage these struc-
tures, i.e., they employed three separate attention matrices to
capture the relationships between each utterance pair on the
same thread, the same speaker, and the reply relation. Yet,
such a detached manner neglects the comprehensive nature
of discourse features, resulting in a potentially myopic un-
derstanding. Considering the scenario illustrated in Figure 1,
a sole focus on the same-thread interaction could mistak-
enly extract the false quadruple (‘Mi 9’, ‘battery life’, ‘dis-
appointed’, negative) due to the proximity of the 2nd and 4th
utterances. Instead, it is much preferable to integrate both the
reply and speaker relationships effectively, treating them as
pivotal discourse features to enhance quadruple extraction.

Neglecting Quadruple Cohesion Much of the prior re-
search has sought to streamline quadruple extraction by di-
viding it into three distinct pair extractions (Zhang et al.
2021a; Li et al. 2023a). Specifically, when all three pairs
involving the target (T ), aspect (A), and opinion (O) are
deemed valid, they collectively, along with a sentiment po-
larity, constitute a quadruple. While this method may seem
to simplify the task, it largely weakens the cohesion of the
quadruple, making the overall extraction quality dependent
on the performance of the weakest pair. As can be exempli-
fied, in a study presented in Li et al. (2023a), some mod-
els performed well on certain pairs but had limited overall
success due to poor results with other pairs. A potential so-
lution is to consider additional tokens in higher order dur-
ing pair extraction, especially those within the quadruple,
to provide more comprehensive viewpoints of the quadru-
ple. Considering an example depicted in Figure 1, a direct
correlation solely between ‘Mi 6’ and ‘top notch’ tends to
overlook nuanced facets of ‘Mi 6’, thus rendering the as-
sociated evaluation (i.e., ‘top notch’) somewhat ambiguous.
By integrating the intermediary aspect ‘build quality’, the
evaluation becomes precisely anchored, indicating that ‘top
notch’ specifically appraises the ‘build quality’ of ‘Mi 6’.

To address the aforementioned challenges, we introduce a
unified model named Harness Holist Discourse Features and
Triadic Interaction (H2DT) for effective quadruple extrac-
tion. In the feature interaction stage: We introduce an R-S
(Reply & Speaker) heterogeneous graph, aiming to holisti-
cally capture the intricate relationships between tokens in
dialogues. Through the construction of a meta-path between
tokens, both reply and speaker role information is integrated,
enriching the discourse feature within the token representa-
tion. In the label encoding stage, We transform the quadru-
ple into token pair labels, producing two matrices: the entity
matrix and the relation matrix. Specifically, within the re-
lation matrix, we employ a triadic interaction mechanism.
This mechanism enhances the token pair interaction by in-
tegrating a third token’s representation, offering a compre-

hensive perspective for quadruple extraction. In the infer-
ence stage, we predict the labels between token pairs, and
the quadruple can readily be derived from the two matrices.

We conducted extensive experiments on the DiaASQ
dataset to evaluate our H2DT model. Notably, our H2DT
model outperformed baselines on both the Chinese and En-
glish datasets, achieving improvements of 5.4 and 5.7 in F1
scores, respectively. In-depth analyses highlight the efficacy
of our heterogeneous graph for cross-utterance quadruple
extraction. Additionally, the triadic interaction that consid-
ers a third token during token-pair label prediction, enhances
the overall quadruple quality. Moreover, our analysis shows
that the H2DT integrates the triadic interaction across the
sequence without incurring substantial computational com-
plexity, underscoring its efficiency and streamlined design.

Overall, this paper revisits the key bottlenecks of DiaASQ
and makes contributions in the following aspects:

• We propose a holistic discourse feature modeling mecha-
nism, underpinned by a heterogeneous attention network,
to refine token representation for the DiaASQ task.

• We introduce an efficient triadic scorer to incorporate
a third token into the token-pair interaction process,
thereby enhancing the coherence of the quadruple.

• Experimental results demonstrate the superior perfor-
mance of our proposed model, pushing the current arts
of the DiaASQ task.

Related Work
Aspect-based Sentiment Analysis Aspect-based senti-
ment analysis (ABSA) has become a pivotal research area
within the field of affective computing (Picard 2000; Zhang
et al. 2023b; Fei et al. 2020), with a significant foundation
laid using the SemEval dataset (Pontiki et al. 2014, 2015,
2016). Broadly, ABSA methodologies fall into two primary
categories (Zhang et al. 2023b; Fei et al. 2022a). The first,
single task, emphasizes individual components like aspect
terms, opinion terms, categories, and sentiment polarities
for an aspect. Approaches span a range from token-level
classification (Liu, Joty, and Meng 2015; Wang et al. 2016)
to machine reading comprehension (Mao et al. 2021; Gao
et al. 2021) and seq-to-seq models (Yang et al. 2020; Yan
et al. 2021). Contrastingly, the compound task delves into
multiple-item extraction, such as aspect-opinion pairing or
aspect sentiment quadruple extraction. Innovations in this
field have produced techniques like span-based models (Wu
et al. 2021; Xu, Chia, and Bing 2021; Zhang et al. 2023a),
machine reading comprehension-based models (Chen et al.
2021; Mao et al. 2021; Gao et al. 2021), and generative-
based models (Zhang et al. 2021b,a; Peper and Wang 2022).
Highlighting recent progress, Li et al. (2023a) showcased
ABSA at the dialogue level, underscoring challenges in di-
alogue comprehension and quadruple extraction. Thus, this
paper’s focus shifts to extraction within DiaASQ.

Discoure Feature Modeling Dialogues, with their inher-
ent complexities such as utterances, speaker roles, reply re-
lationships, and threads, pose a greater understanding chal-
lenge compared to flat document texts. Numerous studies
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have delved into modeling these dialogue-specific features.
Studies such as (Wei, Xu, and Mao 2019) have probed into
the sequential nature of dialogues. Hierarchical discourse
structures in dialogues are explored in works like (Li et al.
2020; Zhu et al. 2020; Peng et al. 2022). The significance
of speaker roles, providing insights into emotional states,
is discussed in (Majumder et al. 2019; He et al. 2021). Ef-
forts integrating external knowledge are seen in (Ren et al.
2020; Zhan et al. 2021; Li et al. 2023b), while syntactic
parsing techniques are explored by (Fei et al. 2022b; Chen
and Miyao 2022). Graph-based models, useful for tasks like
emotion recognition and dialogue generation, are presented
in (Shen et al. 2021; Hu et al. 2021; Chen et al. 2020; Feng
et al. 2022; Lin et al. 2021; Liang et al. 2021). Inspired
by these studies, we introduce a token-level heterogeneous
graph to capture the intricacies of speaker roles and reply
relationships, enriching dialogue feature understanding.

Preliminary
Task Definition
The DiaASQ task takes as its input a dialogue D =
{(s1, u1), (s2, u2), · · · , (s|D|, u|D|)} and a corresponding
reply list L = {l1, l2, · · · , l|D|}. Here, ui = {wi1, wi2, · · · }
denotes the i-th utterance with wij representing its tokens,
while si signifies the speaker of ui. The list L indicates
that the i-th utterance is a reply to the li-th utterance. The
primary objective of this task is to extract a collection of
quadruples C = {(ti, ai, oi, pi)}|C|

i=1, where ti, ai, oi and
pi are spans corresponds to the spans of the target, aspect,
opinion, and polarity, respectively.

Label Schema
We transform quadruple extraction into token-pair relation
detection by constructing an entity matrix and a relation ma-
trix, from which we can further decode the quadruples by
interpreting the labels of each token pair.

As illustrated in Figure 2, for the entity matrix, we de-
fine four labels: target, aspect, opinion, and empty. The tar-
get label identifies tokens from the head token to the tail
token within a target term, while the aspect and opinion la-
bels serve similar purposes for their respective items. The
empty label is assigned when none of the three previously
mentioned labels applies to the current token pair.

The relation matrix illustrates the relationships between
head tokens of two items and encompasses five labels. The
rel label describes relationships from one head token to an-
other, in pairs such as (target, aspect) or (aspect, opinion).
The labels rel-pos, rel-neg, and rel-other describe the rela-
tionships from the head of a target to the head of an opin-
ion, representing positive, negative, and other sentiments, re-
spectively. The empty label in this matrix indicates that no
valid label has been assigned to the token pair.

To derive the quadruples, we adhere to the following de-
coding procedures:
• We first extract entity candidates categorized as target,

aspect, and opinion from the entity matrix.
• We next recognize valid pairs by cross-referencing the

relation matrix with the identified entity candidates.

Entity label

Relation label

Mi  6  ...   build   quality   were   simply   top   notch
rel

target aspect opinion

rel
rel-pos

Figure 2: Label schema for entity matrix and relation matrix.

• Then, for each combination of (target, aspect, opinion):
if all pairs within this combination are validated, they
form a triplet. Together with the sentiment polarity be-
tween target and opinion, these components together
constitute a quadruple.

Heterogeneous Graph
We construct a reply-speaker heterogeneous graph (R-S
graph) to obtain token representations integrated with dis-
course features. In detail, we create a graph G = (V, E),
where V is the set of nodes, i.e., the tokens in the dialogue
utterance, and E is the set of edges with three categories, i.e.,
reply, same speaker, and self-connection. The first two edges
are inherent features of discourse, while the self-connection
is introduced to enhance model stability. Take reply relation
as an example, for a token vi ∈ ua and token vj ∈ ub, if ua

replies to ub, we add an edge from vi to vj in the R-S graph.
Next, given a node vi, we specify five meta-paths that con-

tain multiple edges to control the information flow:

f(vi) =



Rep : vj
rep−−→ vi

Spk : vj
spk−−→ vi

Spk-rep : vj
rep−−→ vx

spk−−→ vi

Rep-spk : vj
rep−−→ vx

spk−−→ vi

Self : vi
self−−−→ vi

(1)

Here vx denotes an intermediate node. For each meta-path,
the start node is defined as the neighbor of the target node vi.
For instance, in Figure 1, the path from the token ‘battery’
in u4 to ‘Xiaomi’ in u1 follows the Rep-spk meta-path. In
this case, ‘Xiaomi’ is the target node, and ‘battery’ is one of
its neighbors involved in the Rep-spk path.

Method
In this section, we delve into the architecture and function-
ing of our H2DT model. As illustrated in Figure 3, the model
encompasses four components: text encoder, Reply-Speaker
(R-S) Graph, entity extraction, and pair extraction.

Text Encoder
Considering the superiority demonstrated by pre-trained lan-
guage models (PLMs) in the NLP domain, we employ a
PLM to achieve deep contextualized token representations.
Given a dialogue D, we flatten it and concatenate its ut-
terances into a continuous sequence, using the specific tag
[CLS] as a separator. This sequence is then fed into the PLM

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18464



u
1

C
LS

C
LS

u
2

u
3

C
LS

u
3

C
LS

...
SEP

Pretrained Lanuage M
odel
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O
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Triadic scorer
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xi xk xj
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speaker
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reply
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Figure 3: The overarching architecture of our H2DT model. Here, T , A, and O stand for target, aspect, and opinion, respec-
tively. Similarly, R and N correspond to relation and relation-negative, respectively. Initially, a pre-trained language model
is employed to procure contextualized representations for the entire dialogue. Subsequent to this, a heterogeneous attention
network is applied to the reply-speaker graph. Then, we employ a dot product to formulate the entity matrix and, in further
steps, capitalize on triadic interactions for token relation extraction.

to generate the desired token representation:
Input = {[CLS], u1, [CLS], u2, · · · , u|D|, [SEP]}, (2)

[h0,h1, · · · ,hn] = PLM(Input), (3)
where [h0,h1, · · · ,hn] denotes all the utterance tokens in
the dialogue, and hi represents the representation of the i-th
token. Note that the total length of each dialogue does not
exceed the maximum input length permitted by the PLMs.

R-S Graph
Upon obtaining the representation for each token, we uti-
lize the heterogeneous attention network (HAN, Wang
et al. (2019)) to enrich the token representation with addi-
tional discourse features. Specifically, drawing upon the R-S
graph, detailed in Section , we perform information integra-
tion for a token vi with respect to meta-path Ω:

hΩ
i = σ(

∑
j∈V Ω

i

αij · hj), (4)

αij =
exp(Wg[hi;hj)]∑

k∈V Ω
i
exp (Wg[hk;hj ])

, (5)

where hΩ
i denotes the representation of token vi for meta-

path Ω, σ is the sigmoid activation function, αij represents
the attention weight, and V Ω

i defines the set of neighbor
nodes for token vi concerning Ω.

Subsequently, we employ an additional attention block to
integrate these representations from various meta-paths:

γΩ =
exp(attg(h

Ω
i ))∑

Ω exp(attg(hΩ
i ))

, (6)

hg
i =

∑
Ω

γΩ · hΩ
i . (7)

Here, attg is a meta-path sensitive attention function, sim-
ilar to the one described in Eq. (5). Furthermore, hg

i repre-
sents the token vi after applying HAN.

To retain the intrinsic information offered by the PLM,
we introduce a fuse gate to dynamically combine the basic
representation hi with that derived from HAN:

F = σ(Wf (h
g
i ,hi) + bg) , (8)

xi = (1–F ) ∗ hg
i + F ∗ hi , (9)

where xi represents the final representation of the token vi.

Entity Extraction
Then we conduct entity label prediction. We use a label-wise
MLP to transform the token representation:

kc
i = MLPk

c (xi); m
c
i = MLPm

c (xi) , (10)
where c ∈ {t, a, o, e} denotes the label in token pair. Since
the relative distance plays a vital role in token-pair label de-
cision, we further incorporate RoPE (Su et al. 2021) to en-
hance the relative distance encoding.

k̂c
i = Φ(θ; i)kc

i ; m̂
c
i = Φ(θ; i)mc

i , (11)
where Φ(θ; i) is a transformation with parameter θ and index
i, and k̂c

i ∈ Rd has the same dimension with kc
i .

Then, we conduct dot-product for each token pair to ob-
tain the label-wise score:

sci,j = (k̂c
i )

⊤m̂c
j , (12)

where sci,j is the score of label between token vi and token
vj in entity matrix. Finally, we can obtain the probability for
the entity matrix label:

pent
i,j = Softmax([sti,j ; s

a
i,j ; s

o
i,j ; s

e
i,j ]) , (13)

where pent
i,j denotes the probability distribution for the pair

(vi, vj) in the entity matrix.
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Figure 4: Details about triadic scorer. soi,k denote the path
score from soi to sok, and soi,k,j denotes the traffine score,
servers as weight for path i → k → j.

Relation Extraction
For the prediction of the relation matrix, we initially
compute the pair-wise score, mirroring the techniques
laid out in Eq. (10) through Eq. (12). This score is
denoted as soi,j , signifying the unary score for the to-
ken pair (vi, vj). The label o is chosen from the set
{rel, rel-pos, rel-neg, rel-other, empty}. Following this, we
employ the triaffine operation (Zhang, Li, and Zhang 2020)
to determine the score for each triplet (vi, vk, vj):

zo
i , z

o
k, z

o
j = MLPo

1(xi),MLPo
2(xk),MLPo

3(xj) , (14)

ŝoi,k,j = W o
t

[
zo
i
1

]
zo
kz

o
j , (15)

soi,k,j =
exp(ŝoi,k,j)∑
o exp(ŝ

o
i,k,j)

, (16)

where soi,k,j represents the unary score for the triplet
(vi, vk, vj) associated with label o, W o

t ∈ Rd′×d′×(d′+1)

is the parameter, and d′ is the dimension of zo∗ . This triaffine
operation can be efficiently implemented using the einsum
function in PyTorch.

To compute the score for each pair (vi, vj), each third to-
ken is treated as a bridge. The triaffine score soi,k,j is em-
ployed as the weight measure for this computation (Zhou
et al. 2022). Using this, all path scores are fused to yield the
final score for the pair (vi, vj):

qoi,j = soi,j +
∑
k

(soi,k + sok,j) ∗ soi,k,j , (17)

where qoi,j is the conclusive score between tokens vi and vj ,
incorporating all third token scores. As shown in Figure 4,
each soi,k,j serves as a weight for fusing the path score for
every path that passes from vi to vj . By implementing this
procedure for each label, predictions regarding the relation-
ship label can be ascertained:

prel
i,j = Softmax([qri,j ; q

r-p
i,j ; q

r-n
i,j ; q

r-o
i,j ; q

e
i,j ]) , (18)

where prel
i,j denotes the probability distribution of the rela-

tion label for the pair (vi, vj).

Learning Objectives
To refine the performance of our model, we undertake a joint
optimization process of the loss functions associated with
both the entity and relation matrices:

Lent = − 1

n2

∑n

i=1

∑n

j=1
log pent

i,j [y
ent
i,j ] , (19)

Lrel = − 1

n2

∑n

i=1

∑n

j=1
log prel

i,j [y
rel
i,j ] , (20)

L = Lent + Lrel , (21)

where n represents the token count in the dialogue. The in-
dices yenti,j and yreli,j represent the gold standard labels for the
entity and relation matrices. The loss functions for the entity
and relation matrices are denoted by Lent and Lrel, with L
signifying the total loss being optimized during training.

In the inference stage, the model predicts labels for the
entity and relation matrices. Subsequently, the methodology
described in Section is applied for quadruple decoding.

Experiment
Experimental Settings
Dataset We rigorously conducted experiments on the Di-
aASQ dataset (Li et al. 2023a), which contains both Chi-
nese and English versions. This corpus consists of multi-
part, multi-turn dialogues sourced from social media, pre-
dominantly focusing on topics related to mobile phones.

Baselines For a comprehensive comparison, we incor-
porated the following models as our baselines: CRF-
Extract (Cai, Xia, and Yu 2021), SpERT (Eberts and Ulges
2020), ParaPhrase (Zhang et al. 2021a), Span-ASTE (Xu,
Chia, and Bing 2021), and Meta-WP (Li et al. 2023a).

Evaluation Following previous work (Li et al. 2023a),
we assess our experiments using precision, recall, and F1
score metrics. These metrics are employed for item detec-
tion (T ,A,O), pair detection (T -A, T -O, A-O), triplet de-
tection (T -A-O), and quadruple detection (the full quadru-
ple). An exact match with the gold standard is required for
an item to be considered a correct prediction.

Hyperparameters Consistent with prior research, we ini-
tialize our pre-trained language model (PLM) with Chinese-
Roberta-wwm-ext (Cui et al. 2021) and Roberta-Large (Liu
et al. 2019) for Chinese and English dataset, respectively.
The hidden dimensions for the HAN layer are set to 768
and 1024, aligning with the PLM output dimensions. For the
MLP in Eq. (10), the dimension is set to 256, respectively.
The dimension in Eq. (14) is set to 100 and 50 for analysis.
During training, we employ a batch size of 2 and run for 15
epochs. The optimizer is AdamW with a learning rate of 1e-
5 and weight decay of 1e-8. We report the average result for
each experiment with four varying seed values to mitigate
random factor influences.

Main Results
Table 1 showcases the primary results of our experiments.
Item Detection: We observe that the H2DT model provides
only modest improvements for the item detection task on
both datasets. This is due to the relative maturity of the task
of detecting target, aspect, and opinion items. As it does not
involve complex interactions, even naive models can achieve
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Data Methods
Entity (F1) Pair(F1) Triplet Quadruple

T A O T -A T -O A-O P R F P R F

ZH

CRF-Extract 91.11 75.24 50.06 32.47 26.78 18.90 / / 9.25 / / 8.81
SpERT 90.69 76.81 54.06 38.05 31.28 21.89 / / 14.19 / / 13.00
ParaPhrase / / / 37.81 34.32 27.76 / / 27.98 / / 23.27
Span-ASTE / / / 44.13 34.46 32.21 / / 30.85 / / 27.42
Meta-WP 90.23 76.94 59.35 48.61 43.31 45.44 / / 37.51 / / 34.94
H2DT 91.72 76.93 61.87 50.48 48.80 52.40 45.40 40.50 42.81 42.78 38.17 40.34
∆ +0.61 -0.01 +2.52 +1.87 +5.49 +6.96 / / +5.30 / / +5.40

EN

CRF-Extract 88.31 71.71 47.90 34.31 20.94 19.21 / / 12.80 / / 11.59
SpERT 87.82 74.65 54.17 28.33 21.39 23.64 / / 13.38 / / 13.07
ParaPhrase / / / 37.22 32.19 30.78 / / 26.76 / / 24.54
Span-ASTE / / / 42.19 30.44 45.90 / / 28.34 / / 26.99

w/o PLM / / / 27.26 20.63 44.62 / / 14.17 / / 13.84
Meta-WP 88.62 74.71 60.22 47.91 45.58 44.27 / / 36.80 / / 33.31
H2DT 88.69 73.81 62.61 48.69 48.84 52.47 44.36 40.23 42.19 41.01 37.20 39.01
∆ +0.07 -0.90 +2.39 +0.78 +3.26 +6.57 / / +5.39 / / +5.70

Table 1: Main results on DiaASQ dataset. ‘ZH’ and ‘EN’ denote the Chinese and English datasets, respectively. The number
with bold is the best result, and that with waveline denotes the second best result.

high performance. Pair Detection: Our model exhibits av-
erage performance for T -A pair detection. Nevertheless, a
marked improvement is evident for the T -O pair, with gains
of 5.49 and 3.26 in F1 scores on the Chinese and English
datasets, respectively. The A-O pair detection showcases
improvements of 6.96 and 6.57 in F1 scores. The results
show that the triadic interaction mechanism significantly im-
proves T -O and A-O detections.
Triplet Extraction: Noteworthy improvements in triplet
extraction are evident with our model, achieving F1 scores
of 5.30 and 5.29 on Chinese and English datasets, respec-
tively. These figures clearly demonstrate the effectiveness
and robustness of our approach. Quadruple Extraction:
Focusing on quadruple extraction, a core task of DiaASQ,
we notice marked improvements. The data shows gains of
5.40 and 5.70 in F1 scores on Chinese and English datasets,
respectively. These findings underscore the superiority of
our H2DT model for DiaASQ over existing baselines.

In conclusion, the results from our experiments provide
compelling evidence of the strength and stability of the
H2DT model, especially in tasks involving intricate interac-
tions such as triplet and quadruple extractions. The consis-
tent improvements across multiple tasks underline the poten-
tial of the model to become a strong benchmark in DiaASQ.

Ablation Study
To rigorously investigate the contributions of each module,
we conducted an ablation study, as shown in Table 2. Firstly,
concerning the R-S graph, we observed that its removal led
to a notable decline in performance. The F1 scores for the
quadruple dropped by approximately 3.32 and 1.83 for the
Chinese and English datasets, respectively. Subsequently,
on examining different modules in the R-S graph, the per-
formance demonstrated varying degrees of decrement upon
their removal. The ‘self-link’ exhibited the least decline,

Methods
Chinese(F1) English(F1)

Trip. Quad. Trip. Quad.
H2DT 42.81 40.34 42.19 39.01
w/o R-S Graph 40.99 37.02 40.66 37.18
w/o Self 42.42 39.10 41.66 38.86
w/o First 41.49 38.70 41.71 38.44
w/o Second 42.08 38.97 41.13 38.30
w/o Triadic 40.51 37.63 39.58 36.40

Table 2: Ablation study focusing on the R-S graph and tri-
adic interaction. ‘Self’ represents the self-link in the R-S
graph, while ‘first’ refers to the first-order link, i.e., Rep and
Spk. ‘Second’ signifies the second-order link, encompass-
ing Rep-spk and Spk-rep. Further details can be found in
Eq. (1). The term ‘w/o triadic’ indicates the removal of the
second part in Eq. (17).

while ‘First’ and ‘Second’ experienced more substantial
drops. This suggests that our R-S graph is adept at captur-
ing conversational features, which in turn influences the ex-
traction of triplets and quadruples. Furthermore, when com-
paring the results after removing the ‘triadic’ module, the
decrease in performance was the most pronounced, reaching
up to 2.71 and 2.61 in F1 scores on the Chinese and En-
glish datasets, respectively. This underscores the importance
of our triadic interaction scores for the extraction process.

In-depth Analysis
Subsequently, we conduct a detailed analysis to address sev-
eral questions to further validate the efficacy of our model.

Q1: How does the R-S Graph enhance extraction perfor-
mance? As demonstrated in Figure 5, we undertook a de-
tailed comparative analysis to investigate the quadruple ex-
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Figure 5: Quadruple extraction scores on overall, inter-
utterance, and intra-utterance instances. The term ‘w/o R-S
graph’ denotes the removal of the R-S graph in our H2DT
model, and ∆x indicates the performance gap compared to
the H2DT model.

traction capabilities of three distinct models: the Meta-WP
model, the H2DT model, and a version of the H2DT model
from which the R-S Graph component has been excluded.
For this comparative study, we categorized the results into
three primary dimensions: the overall performance metrics,
metrics for intra-utterance quadruples, and those for inter-
utterance quadruples. Upon integrating the R-S Graph, our
model exhibits a significant improvement in the extraction
of the inter-utterance quadruples. Specifically, considerable
increments of 4.65 and 3.37 are observed in the F1 scores
for the Chinese and English datasets, respectively. This ob-
servation substantiates that the proposed R-S Graph can ef-
fectively harness discourse features, thereby elevating the
extraction of inter-utterance quadruples. Furthermore, it can
be noted that the extraction of intra-utterance quadruples is
somewhat influenced by the context. As such, our proposed
R-S Graph demonstrates a marginal yet discernible impact
on improving the extraction of intra-utterance quadruples.
Consequently, the average performance lies between the two
aforementioned categories, with improvements of 3.32 and
1.83 in F1 scores for Chinese and English datasets, respec-
tively. Additionally, the performances of H2DT on intra-
utterance or inter-utterance quadruple extraction both no-
tably surpass the Meta-WP model, underlining the superi-
ority and robustness of H2DT.

Q2: What impact does the triadic scorer have on differ-
ent types of Pair combinations? We conduct an analy-
sis encompassing diverse pair combinations with and with-
out the incorporation of the triadic scorer. The results shown
in Figure 6 indicate that the augmentation achieved through
the utilization of the triadic scorer yielded relatively mod-
est improvements in the case of the T -A combination. A
possible reason for this lies in the fact that both T and A
are common terms describing an aspect of a target, mak-
ing their combination relatively straightforward. However,
when addressing T -O/A-O combinations, especially T -O,
the connection is weaker. Notably, the introduction of the tri-
adic scorer brought about a significant improvement in these

T -A T -O A-O T -A T -O A-O
40

45

50

55

F
1
S
co
re
(%

)

Meta-WP H2DT w/o Triadic

Chinese English

Figure 6: Performance of various pair extractions. The term
‘w/o Triadic’ denotes exclusion of Eq. (17)’s second part.

Methods
Param.(M) Speed(Dia./s)

ZH EN ZH EN
Meta-WP 114.05 363.91 5.33 3.66
H2DT 111.81 359.04 8.16 6.01
w/o Triadic 110.85 358.91 9.43 6.47

Table 3: Comparison of parameter counts and training
speeds between H2DT and Meta-WP. ‘Param.’ represents
the total number of parameters, while ‘Dia./s’ indicates the
number of dialogues processed per second.

instances. This suggests that the utilization of intermediary
tokens effectively addresses the fragmentation issue of pairs
in relation to triplets, enhancing the coherence of the triplets
and subsequently improving extraction performances.

Model Efficiency Analysis
A potential concern might be that our model structure, which
facilitates extensive token interactions, could lead to an in-
crease in the number of parameters. To address this appre-
hension, we enumerated both the parameter count and the
training time. As shown in Table 3, it becomes evident that
our model not only did not increase the parameter count but
on the contrary, substantially reduced it compared to Meta-
WP, while also enhancing the inference speed. Moreover,
the introduction of the triadic component only contributed
to a negligible increase in parameters (less than 1%). This
underscores the efficiency of our proposed model.

Conclusion
In this paper, we proposed a model leveraging unified dis-
course features and triadic interaction for dialogue sentiment
quadruple extraction. In detail, we build a heterogeneous
graph to unify the encoding of the reply and speaker in-
formation in dialogue, achieving a comprehensive discourse
structure. By harnessing the power of our triadic scorer,
we further enhance the coherence and cohesion within the
quadruple structure, ensuring robust token relationships.
The experiment on benchmark demonstrates that our model
achieves unquestionable leading performance on both two
datasets of the DiaASQ task. We believe our work lays a
solid foundation for future research in aspect-based senti-
ment analysis in dialogues.
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