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ABSTRACT

Given a descriptive language query, Video Moment Retrieval (VMR)
aims to seek the corresponding semantic-consistent moment clip in
the video, which is represented as a pair of the start and end times-
tamps. Although current methods have achieved satisfying perfor-
mance, training these models heavily relies on the fully-annotated
VMR datasets. Nonetheless, precise video temporal annotations
are extremely labor-intensive and ambiguous due to the diverse
preferences of different annotators.

Although there are several works trying to explore weakly super-
vised VMR tasks with scattered annotated frames as labels, there
is still much room to improve in terms of accuracy. Therefore, we
design a new setting of VMR where users can easily point to small
segments of non-controversy video moments and our proposed
method can automatically fill in the remaining parts based on the
video and query semantics. To support this, we propose a new
framework named Video Moment Retrieval via Iterative Learning
(VMRIL). It treats the partial temporal region as the seed, then ex-
pands the pseudo label by iterative training. In order to restrict the
expansion with reasonable boundaries, we utilize a pretrained video
action localization model to provide coarse guidance of potential
video segments. Compared with other VMR methods, our VMRIL
achieves a trade-off between satisfying performance and annotation
efficiency. Experimental results show that our proposed method
can achieve the SOTA performance in the weakly supervised VMR
setting, and are even comparable with some fully-supervised VMR
methods but with much less annotation cost.

CCS CONCEPTS

+ Computing methodologies — Visual content-based index-
ing and retrieval.

“Corresponding Author

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0108-5/23/10.
https://doi.org/10.1145/3581783.3612088

Renjie Liang
National University of Singapore
Singapore, Singapore
10924327 @u.nus.edu

Lizi Liao
Singapore Management University
Singapore, Singapore

lzliao@smu.edu.sg
Fuli Feng
University of Science and Technology
of China
Hefei, China
fulifeng93@gmail.com
KEYWORDS

video moment retrieval, labor-intensive, pseudo label, coarse guid-
ance

ACM Reference Format:

Wei Ji, Renjie Liang, Lizi Liao, Hao Fei, and Fuli Feng. 2023. Partial Annotation-
based Video Moment Retrieval via Iterative Learning. In Proceedings of the
31st ACM International Conference on Multimedia (MM °23), October 29-
November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3581783.3612088

1 INTRODUCTION

Video Moment Retrieval (VMR) (a.k.a., Natural Language Video Lo-
calization, Video Sentence Grounding) aims to localize the temporal
moment from an untrimmed video corresponding to a descriptive
query, which is represented as a pair of the start and end times-
tamps. As a multi-modal task that bridges computer vision and
natural language processing, VMR is beneficial to a series of down-
stream tasks, such as video question answering [18, 19, 44], video
relationship detection [36, 37], and video dialog [4, 34], etc. Thus
the task has been fundamental in the topic of video understanding.

While VMR performance has achieved huge gains in recent
years, most of the existing methods are limited to the fully super-
vised setting which rely on large-scale annotation corpus, such
as Charades-STA [13], ActivityNet [38], etc. Manually annotating
data, especially for the video modality, can be time-consuming and
labor-intensive, which greatly hinders the application of VMR in
real-world scenarios. Besides, as cast in [32], different annotators
may have different preferences when annotating a video moment
corresponding to the same query (e.g., in Figure 1), it might be
hard for annotators to agree upon whether it starts at the moment
when the guy first holds the saxophone or blows into the saxophone.
Such disagreements in label supervision will inevitably mislead and
harm the model training,.

One direct solution to ease the above conundrums is to allevi-
ate the reliance on annotation supervision. Some previous works
have explored weakly-supervised VMR with only <query, video>
pairs [29, 30] without fine-grained temporal boundary labels, as
illustrated in Figure 1 (b). Due to the lack of location informa-
tion in training, nevertheless, these practices can lead to much
poorer performance compared with the fully-supervised methods.
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Query: A guy is playing the saxophone.

(a) Fully Supervised
[

10.50 32.35
(b) Weakly Supervised (without Location Information)
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(c) Single Frame Supervised
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Figure 1: Illustration of Video Moment Retrieval tasks in dif-
ferent settings. The green arrow represents the supervision.
(a) is fully supervised setting with precise temporal labels,
such as timestamp of (10.50, 32.35); (b) is weakly supervised
setting without any location information; (c) is single frame
annotation as supervision, such as timestamp of (18.04). Com-
pared with (a), (b), and (c), our proposed weak-supervised
setting (d) provides partial location signals that are without
controversy.

Recently, [5] propose a different weakly-supervised VMR setting,
where one single frame within fully-supervised ground truth is
taken as “glance” annotation (as shown in Figure 1 (c)), so as to
effectively reduce the burden of annotation. Despite achieving bet-
ter task performance, this method suffers from the problem that
a single frame of annotation is insufficient when facing queries
with multiple semantics. Also, using Gaussian distribution with a
single frame as a peak to simulate the pseudo label for video clips is
heuristic, and thus limits the label area and confines the expanding
possibility.

In view of the labor-saving potential as well as current limita-
tions of existing weakly-supervised VMR methods, in this work, we
explore a more effective and practical setting of weakly-supervised
VMR. The core idea is characterized as seed annotation, i.e., en-
couraging the system to learn to gradually expand to more high-
confidence regions. This naturally corresponds to the fact that dif-
ferent annotators can select a small segment of the non-controversy
part (denoted as “seed”, as shown in Figure 1 (d)) and the model
learns to fill in the remaining parts. To realize this, two main chal-
lenges need to be properly addressed: (1) How to properly solicit
evidence from the query and video content for area expansion,
given the seed as supervision; (2) How to determine the bound-
aries for the iterative expansion process based on query and video
content semantics.

Hence, given the partial temporal regions as weak supervision,
we consider a new pipeline named Video Moment Retrieval via
Iterative Learning (VMRIL) to train a reliable VMR model. Our
proposed pipeline can be adaptive to any other fully-supervised
VMR models. First, we train a VMR model under the supervision of
the seed area, which automatically learns the semantic associations
between the video segments and textual queries. Such knowledge
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is further utilized to gradually expand possible regions as pseudo
labels for training data. In order to restrict the expansion of pseudo
labels, we utilize a pretrained action localization model and filtering
function to provide coarse-grained guidance of possible temporal
boundaries. By iteratively training the VMR model and generating
pseudo labels, it learns to incorporate various shreds of evidence
to find the proper region.
Our contributions are summarized as follows:

e We propose a new setting of weakly-supervised VMR task
with partial labels, release reorganized datasets of three pub-
lic datasets, and introduce a corresponding solution named
novel iterative learning based pipeline (VMRIL), which can
be adaptive to any other fully-supervised VMR baselines.

o To restrict the expansion with reasonable boundaries, we
utilize a pretrained video action model and filtering function
to provide coarse guidance of potential video segments. We
also propose a multi-label training strategy to make the
model more robust.

o Experimental results show that our proposed methods achieve
the SOTA performance in weakly supervised VMR, and are
even comparable with some fully-supervised methods.

2 RELATED WORK

Fully supervised Video Moment Retrieval. Video Moment Re-
trieval (VMR) is defined as retrieving video segments with consis-
tent semantics of query [1, 22-26, 45], which is also relevant to a se-
ries of visual retrieval tasks [6-10]. The fully supervised VMR meth-
ods can mainly be classified into three categories: Proposal-based
method, Proposal-free method, and Reinforcement Learning-based
method. In early works, some proposal-based methods [15, 27] treat
this task as a ranking problem and follow the propose-and-rank
pipeline. These methods first generate proposals in various lengths
by sliding window [13] or Segment Proposal Network (SPN) [46],
then they calculate the multi-modal semantic matching to find the
best matching proposal for the query. The drawbacks of proposal-
based methods lie in densely sampling video moment proposals to
achieve good performance, which leads to large computation costs.

To overcome the above-mentioned drawbacks, Yuan et al.[51]
propose a proposal-free method, which utilizes a Bi-LSTM to encode
visual and sentence features, and a co-attention interaction module
to fuse multi-modal features. The model treats the video as a whole
and directly predicts the temporal coordinates according to the sen-
tence queries. Lu et al.[28] propose a dense bottom-up framework,
which treats all frames corresponding to the language query as
foreground, and then regresses the unique distances of each frame
in the foreground to bi-directional ground-truth boundaries, finally
fuses appropriate temporal candidates as the final result. To mine
the relationship of sentence semantics with diverse video contents,
Yuan et al.[50] also propose a semantic conditioned dynamic modu-
lation, which leverages sentence semantic information to modulate
the temporal convolution processes in a hierarchical temporal con-
volutional network and establishes a precise matching relationship
between sentence and video. Recently, Zhang et al. [54] propose a
2D temporal map to model the temporal relations of different mo-
ments with variant lengths, in which the two dimensions indicate
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Figure 2: The proposed VMRIL pipeline. Our VMR model (in the green box) is first trained with the seed area as supervision.
It then generates pseudo labels via iterative expansion. In each iteration, the pseudo labels are adjusted with the temporal
guidance of the pretrained action location model. The VMR model will be updated with the pseudo labels.

the start and end timestamps, respectively. Apart from these top-
down and bottom-up methods, there are also works [14, 41] which
adopt reinforcement learning to make decisions on the action space
of candidate segments, such as the start or end boundaries move left
or right, corresponding to the language query matching result. The
performance of all these methods mentioned above heavily relies
on well-annotated datasets. Different from these, we explore weakly
supervised Video Moment Retrieval tasks with trivial annotation
costs.

Weakly Supervised Video Moment Retrieval. Without the
annotation of precise temporal labels, weakly supervised Video
Moment Retrieval methods can be mainly grouped into two cate-
gories: multi-instance learning and reconstruction-based methods.
For the multi-instance learning methods, TGA [30] first deals with
the Video Moment Retrieval task by treating the video and corre-
sponding query as positive pairs, while video with other queries and
query with other videos as negative pairs. For the reconstruction-
based methods, Duan et al.[12] treat the moment localization and
event captioning as dual tasks, and constrain the reconstructed
caption and raw query with cycle consistency.

Different from these weakly supervised VMR works that only
use <query, video> pairs as supervision, there are also some works
that try to explore the higher performance of weakly supervised
VMR with few localization annotations. For example, Cui et al.
[5] propose to use one random frame with the temporal region
of fully supervised labels as weak supervision and then propose
the ViGA method based on contrastive learning. In this paper, we
further explore the weakly supervised VMR task with few temporal
annotations in an iterative learning framework, which yields better
performance.

3 APPROACH

In this section, we first define the problem of weakly supervised
VMR with seed annotation. Then we introduce each component of
our VMRIL model in Section 3.3 and 3.4. The whole architecture
of VMRIL is illustrated in Figure 2. Finally, the inference process is
introduced in Section 3.5.

3.1 Dataset Collection

The motivation of our work is annotating small segments of non-
controversy video moments for the weakly-supervised Video Mo-
ment Retrieval tasks. Compared with annotating a single frame for
each video, our setting provides more information but at minor
cost. The annotators only need to label the temporal region with
the highest confidence, rather than locating the precise temporal
boundaries, which is a quick annotating method for a new dataset.
We provide a set of new partial annotations and provide ablation
studies of different labeling methods in Section 4.5.1.

3.2 Problem Formulation

Given an untrimmed video V = { ft}thl and the language query
0={qj };": 1» Where T and m are the numbers of frames and words,
respectively, our goal is to predict the start and end timestamp (z°,
7°) in the video corresponding to query Q. In a fully supervised
setting, VMR models are trained with the ground truth of LgT =
(7%, 7°). In this paper, we propose a new setting of VMR with partial
temporal regions (¢°, $¢) which are randomly selected from the
segment (7%, 7¢), where 7° < ¢* < ¢¢ < 7°. And the IoU of (¢°, ¢€)
compared with (7%, 7¢) is defined as A. We refer the partial temporal
regions Lseoq = (%, ¢¢) as seed area. In each iteration, we calculate
the IoU of the pseudo label compared with (7°, 7¢) as w.

3.3 Multi-modal Feature Encoder Module

For each video V, we extract its visual features V = {v; }_; € R7¥do
with a pretrained 3D ConvNet[3], where n is the length of extracted
features. Each feature v; here is a video feature vector. For each
query Q, we initialize the word features {Q = q; };”:1 € R™%4q by
using the popular GloVe embeddings [33].

We first project V and Q into the same dimension d using pro-
jection matrices, then we feed them into the VisualEncoder and
QueryEncoder respectively:

V= VisualEncoder(VW"),§ = QueryEncoder(QWY) (1)

where W? € R%*d and W9 € R%*9 are projection matrices to
keep the dimension consistent between two modalities. Inspired
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by QANet [49], the VisualEncoder and QueryEncoder are com-
posed of four convolution layers and a multi-head attention layer
to capture in-depth semantics in the corresponding modality.
With the encoded visual and query features Vand é, we calculate
the similarity between the two modal features and fuse the multi-
modal features by a multi-modal attention mechanism. Similar
to [28], we first calculate the similarity scores, S € R"*™, between
each visual feature and query feature. Then the attention weights
of visual-to-query (A) and query-to-visual ($) are computed as:

ﬂ:Sr-éeR"Xd,

- @
B=8,-SI.Verd

where S, and S, are the row-wise and column-wise normalization
of S by softmax operation, respectively. Finally, the output of visual-
query attention is written as:

V9 = FEN([V; AV 0 AV 0 B]), 3)

where V9 € R™*4; FFN is a single feed-forward layer; © denotes
element-wise multiplication. V9 is the fused multi-modal semantic
features with visual and query attention.

Then we follow [52] and calculate Ps and Pe, which represent
logitstqrs and logit,,y in Figure 2. Hence, the whole network of
VMR model can be defined as:

(Ps, Pe) = F(V,Q:0), (4)
where 0 refers to the network parameters of F.

3.4 [Iterative Learning with Pseudo Label

In the initial iteration, the start and end boundary curve (Ps, Pe)
are supervised with seed area Lge.q = (¢°, 9¢). After training with
a cross entropy loss between Lg..4 and (Ps, Pe), the parameters of
VMR model 6 are updated. In the following iterations, the labels
of training data will be updated with training data as input of the
VMR model.

Since the seed area is partial annotation, we need to expand the
seed area by iterative learning and constrain the temporal boundary
to avoid over-expansion. Then, we borrow the knowledge of pre-
trained action localization model, BMN [20], to provide guidance on
pseudo label expansion. Given the video as input, we extract Bound-
ary Probability Curve PZ¢¢10" and P2¢4i0" wwhich are the outputs of
Temporal Evaluation Module in BMN model. P¢#i0" andpgction
contain the temporal localization information of pretrained action
labels.

Then, in order to fuse information of BMN model and output of
VMR model (Ps, P.), we define the following operations to generate
the pseudo label based on (Ps, P,) and Action Boundary Probability
(Psaction, chtion):

S = matmul (P X PS“CHO", P, X Peacnon),

Leana = NMS(S)
where (Ps, P.) represents the start/end possibility in the video
sequence, matmul means matrix multiply. Here, S € R"*" is the
scores map, NMS means the Non-Maximum Suppression, which is
widely used in the object detection tasks, as shown in Figure 3.

Actually, we want candidate labels to be both diverse and accu-

rate. NMS is an ideal method to generate candidate labels. After
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fusing the proposals from (Pg, P) and (P3¢*ion, paction) ye select
the most confident one L., ; as the candidates. Then, we select
pseudo label from L.,,g and Lge.q:

Llriew = argmax(soft'mIOU(Lcand’ Lseed) > a), (6)
where « is the hyper-parameter. More ablation studies about hyper-
parameter and selection operations can be found in Section. 4.5.2.
LY is the new pseudo label corresponding to the language query
Q, where k is the number of iteration.

Then, we take a new pseudo label L'*" of training data to retrain
the VMR model. The loss function is cross-entropy as [54] described.
After k iterations, the parameters of VMR model 6. are updated.

3.5 Training and Inference.

Multi-label Training. In the training stage, the output of Seq-
PAN [52] model is the probability distributions of start/end bound-
aries Py /.. The training objective is:

Lioe = 5 % [for (P Yo) + fen(Pe Yo o)

where fcg is the cross-entropy function, Y/, is the one-hot labels
for start/end (i*/i®) boundaries.

Since we only have pseudo labels to train the SeqPAN, which are
not precise as ground truth, we propose soft label to replace hard
label in the seed region: For the start/end frame, we use a Gaussian
distribution to model the labels of surrounding frames, where the
peak position of Gaussian is the seed region, o represents the width
of Gaussian curve.

Besides, to improve the generalization ability of our model, we
generate multi labels by adjusting the start and end boundaries
of pseudo labels with a fixed offset. More ablation studies can be
found in Section 4.5.3.

The overall training loss of SeqPAN is to minimize the combined
loss of L}, and supervision to intermediate features during the
training process. Considering the multi-label regularization, the
rectified loss is:

std = var(Ps) + var(P,),

Lioc ®)

Loss = — +std,
0ss 7t

where var(Ps) and var(P,) are the variance of Ps and P, we use
Loss to train the whole VMRIL model.

Inference. When testing, with the trained model F(V,Q; 6y),
the predicted start and end boundaries of the given video-query

0 102030405060 0 102030405060

i i

0 102030405060

w/o NMS « wNMS

Figure 3: Illustration of NMS on temporal map. Samples with
NMS are sparse with diversity.
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pair (V, Q) are generated by maximizing the joint probability as:

(i%,1°) = arg max Ps(a°) X Pe(d°)
as’de

©

st:0<PF<i®<N-1

where i* and i® are the best start and end boundaries of the predicted
moment for the given video-query pair. And the predicted start/end
time is computed by fs(e) = js(e) /(N — 1) x T, where 7 is the
duration of the given video.

4 EXPERIMENTS
4.1 Datasets

To evaluate the performance of our proposed VMRIL, we conduct
experiments on three challenging Video Moment Retrieval datasets,
all the queries in these datasets are in English:

Charades-STA [13] is composed of daily indoor activities videos,
which is based on Charades dataset [38]. This dataset contains 6672
videos, 16,128 annotations, and 11,767 moments. The average length
of each video is 30 seconds. 12,408 and 3, 720 moment annotations
are labeled for training and testing, respectively; ActivityNet Cap-
tion [2] is originally constructed for dense video captioning, which
contains about 20k YouTube videos with an average length of 120
seconds. As a dual task of dense video captioning, Video Moment
Retrieval utilize the sentence description as a query and outputs
the temporal boundary of each sentence description. TACoS [35]
is collected from MPII Cooking dataset [35], which has 127 videos
with an average length of 286.59 seconds. TACoS has 18,818 query-
moment pairs, which are all about cooking scenes. We follow the
same splits in [13], where 10, 146, 4, 589, and 4, 083 annotations are
used for training, validation, and testing, respectively.

It is worth noting that some methods make minor changes to
the dataset when evaluating the experimental performance. For
example, CMIN [55] uses val_1 as the validation set and val_2
as the testing set in the ActivityNet Captions dataset, while other
methods [54] combine the val_1 and val_2 together as the testing set.
And for the TACoS dataset, SeqPAN [54] utilize a modified TACoS
dataset for evaluation. To make a fair comparison, we follow the
setting of dataset splitting to report in their original papers when
evaluating the performance of our method.

4.2 Evaluation Metrics

Following existing video grounding works, we evaluate the perfor-
mance on two main metrics: mIoU: “mIoU" is the average predicted
Intersection over Union in all testing samples. The mIoU metric
is particularly challenging for short video moments; Recall: We
adopt “R@n,IoU = p” as the evaluation metrics, following [13].
The “R@n, IoU = p” represents the percentage of language queries
having at least one result whose IoU between top-n predictions
with ground-truth is larger than p. In our experiments, we reported
the results of n = 1 and y € {0.3,0.5,0.7}.

4.3 Implementation Details

For language query Q, we use the 300-D GloVe [33] vectors to
initialize each lowercase word, and these word embeddings are fixed
during training. For video V, we downsample frames and extracted
RGB visual features using the 3D ConvNet which was pre-trained
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on the Kinetics dataset. We set the dimension of all the hidden
layers in the model as 128, the kernel size of the convolutional layer
as 7, and the head size of multi-head attention as 8. For all datasets,
models were trained for 50 epochs. The batch size was set to 64.
Dropout and an early stopping strategies were adopted to prevent
overfitting. The whole framework was trained by Adam optimizer
with an initial learning rate 0.0002. We use the weakly datasets
with A = 0.3 in the following experiments. The « is set at 0.05, 0.20,
0.20 in Charades-STA, ActivityNet and TACoS respectively. More
ablation studies can be found in Section 4.5. All experiments are
conducted on a NVIDIA RTX A5000 GPU with 24GB memory. The
parameters of VMRIL keeps the same as SeqPAN and VSLNet.

4.4 Comparison with State-of-the-Arts

4.4.1 Experimental Settings. We compare our proposed VMRIL
with state-of-the-art Video Moment Retrieval methods on three
public datasets. These methods can be grouped into two categories
according to the viewpoints of fully-supervised, weakly-supervised
approaches:

1) For the fully-supervised VMR models: CTRL [13] produces
proposals in various length via sliding window; QSPN [47] is a
representative proposal generation-based method; 2D-TAN [54]
models proposals with 2D Temporal Map; LGI [31] model the visual
and textual feature via effective local-global interaction in hierar-
chical levels; VSLNet [53] is a span-based method which aims to
predict the start/end probability of each frame; SeqPAN [52] pro-
poses a parallel attention network with sequence matching to deal
with multi-modal representation and target moment boundary pre-
diction; EAMAT [48] designs an entity-aware and motion-aware
Transformers to detect the actions in the video sequences globally
and refines the temporal boundaries locally; BANet-APR [11] pro-
poses boundary-aware feature aggregation module to fuse bound-
ary features and propose a proposal-level contrastive learning
method to learn query-related content features; EMB [16] estab-
lishes an explicit association between the content information of
each segment and the boundary information of each frame, and
synergistically complements them via a novel guided attention
mechanism.

2) In the weakly-supervised VMR models: TGA [30], BAR [43],
LoGAN [40], CRM [17], as well as VLANet[29] are all meth-
ods based on multi-instance learning, which regards the input
video as bag of instances with bag-level annotations; SCN [21]
and MARN [39] are reconstruction-based methods, which select
a certain number proposals as input to reconstruct masked query,
and compute rewards based on reconstruction loss. RTBPN [56] de-
signs the shared two-branch proposal module to generate positive
proposals from the enhanced stream and plausible negative pro-
posals from the suppressed one; WSTAN [42] learns cross-modal
semantic alighment by exploiting temporal adjacent network in a
multiple-instance learning (MIL) paradigm, with a whole descrip-
tion paragraph as input; CNM [57] introduces intra-video con-
trastive negative sample mining to deal with weakly supervised
Video Moment Retrieval task; CPL [58] proposes a controllable
Easy to Hard Negative sample mining strategy to collect nega-
tive proposals within the video and ease the model optimization;
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Table 1: Performance comparison with the state-of-the-art methods under different supervision settings. VSLNet (baseline) and
SeqPAN (baseline) represents retraining two baseline models with seed supervision and without iterations. VMRIL (VSLNet)
and VMRIL (SeqPAN) represents VMRIL with different baselines.

. Charades-STA ActivityNet Captions TACoS
Supervision Method
R1@0.3 R1@0.5 R1@0.7 mloU | RI@0.3 R1@0.5 R1@0.7 mloU | RI@0.3 R1@0.5 R1@0.7 mloU
CTRL [13] - 23.63 8.89 - - - - - 18.32 13.3 - -
QSPN [47] 54.7 35.6 15.8 - 45.3 27.7 13.6 - B - B -
2D-TAN [54] - 39.7 23.31 - 59.45 44.51 26.54 - 37.29 25.32 - -
LGI [31] 72.96 59.46 35.48 51.38 58.52 41.51 23.07 41.13 - - - -
Supflz:lillilsion VSLNet [53] 70.46 54.19 35.22 50.02 63.16 43.22 26.16 43.19 29.61 24.27 20.03 24.11
SeqPAN [52] 73.84 60.86 41.34 53.92 61.65 45.50 28.37 45.11 48.64 39.64 28.07 37.17
EAMAT [48] 74.19 61.69 41.96 54.45 55.33 38.07 22.87 40.12 50.11 38.16 26.82 36.43
BANet-APR [11] 74.05 63.09 42.12 54.15 65.11 46.8 26.70 45.87 48.24 33.74 - -
EMB [16] 72.50 58.33 39.25 53.09 64.13 44.81 26.07 45.59 50.46 37.82 22.54 35.49
TGA [30] 3214 1994  8.84 - - - - - - - - -
SCN [21] 42.96 23.58 9.97 - 47.23 29.22 - - - - - -
BAR [43] 44.97 27.04 12.23 - 49.03 30.73 - - - - - -
RTBPN [56] 60.04 32.36 13.24 - 49.77 29.63 - - - - - -
VLANet [29] 45.24 31.83 14.17 - - - - - - - - -
Weak
Supervision MARN [39] 48.55 31.94 14.81 - 47.01 29.95 - - - - - -
LoGAN [40] 5167 3468 1454 - - - - - - - - -
CRM [17] 53.66 34.76 16.37 - 55.26 32.19 - - - - - -
WSTAN[42] 43.39 29.35 12.28 - 52.45 30.01 - - - - - -
CNM[57] 60.04 35.15 14.95 - 55.68 33.33 - - - - - -
CPL [58] 66.4 49.24 22.39 43.48 55.73 31.37 12.32 36.82 - - - -
Glance ViGA [5] 71.21 45.05 20.27 44.57 59.61 35.79 16.96 40.12 19.62 8.85 3.22 15.47
VSLNet (baseline) 25.48 7.77 2.07 19.13 28.72 12.84 3.78 20.08 21.69 9.12 2.17 15.16
Partial SeqPAN (baseline) 39.35 9.49 1.26 23.52 43.22 23.37 11.52 32.58 27.12 11.07 3.12 17.69
VMRIL (VSLNet) 52.12 22.88 12.9 37.13 52.66 34.1 19.44 38.50 32.67 19.85 7.22 22.09
VMRIL (SeqPAN) 72.19 55.16 34.19 50.18 | 59.35 41.10 23.94 4294 | 47.66 35.04 19.05 33.00

ViGA [5] is recently proposed which brings in single frame label
as glance supervision.

We choose VSLNet [53] and SeqPAN [54] as baseline networks,
which are known as typical proposal-free models with published
source codes. For the implementation based on each baseline method,
our VMRIL (VSLNet) shares the same architecture as VSLNet in Fea-
ture Encoder Module. Specifically, we implement the VSLNet with
C3D feature followed the settings they reported in original paper.
For the VMRIL (SeqPAN), we follow the same settings according to
original papers.

4.4.2  Quantitative Results. Table 1 summarizes the experimental
results on Charades-STA, TACoS, and ActivityNet Captions dataset.
SeqPAN (baseline) and VSLNet (baseline) represent directly train-
ing SeqPAN and VSLNet with seed area Lg,.;. VMRIL (SeqPAN)
and VMRIL (VSLNet) mean iteratively training based on the two
baselines. From the results we observe that our VMRIL can ef-
fectively improve the performance of baseline networks over all
metrics and benchmarks. For Charades-STA dataset, we can see
that VMRIL (SeqPAN) works well in even stricter metrics. Com-
pared with ViGA [5], VMRIL (SeqPAN) achieves a significant 5.61%
absolute improvement in mloU, which demonstrates the effective-
ness of proposed model. Moreover, VMRIL benefits from iterative

learning and pretrained video localization model, and thus achieves
state-of-the-art results in weakly-supervised setup on this dataset.

We further compare the results on TACoS and ActivityNet Cap-
tions dataset. Note that videos in TACoS have longer averaged
lengths, and the ground-truth video segments in ActivityNet Cap-
tions have longer averaged lengths. Although different baseline
methods show different performances on two datasets, for exam-
ple, SeqPAN achieves better results on ActivityNet, while VSLNet
performs better on TACoS, the performance gain of VMRIL is stable.

Charades-STA ActivityNet
80
7118 7153 7202 728 7075
60 54 06 58.4 59.08 58.5 59.5 59.35
06 5323 5317 5266 5091 T
40.72 40.99 4021 41.07 411
40 32.74 33.55 3234 3046 31.29
2339 23.66 2333 2385 23.94
20
001 005 010 015 020 0.01 005 010 015 020
a a
—— R1@0.3 —— R1@0.5 —— R1@0.7

Figure 4: Qualitative results of mIoU with different hyper-
parameter @ on two datasets.
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As our proposed VMRIL is a general iterative learning based-
method, it is model-agnostic and can be well adapted to any other
fully-supervised Video Moment Retrieval method. Although there
is no special network design in VMRIL compared with ViGA [5],
VMRIL can achieve consistent performance gain based on Seq-
PAN [54] and VSLNet [53]. Above results and comparisons directly
proves the efficacy of our proposed method.

Charades-STA ActivityNet
60 1.0
50 1 Lo.s
40 A g
0.6
30 8
0.4
20 A 8
10 A R 0.2
- - - 0.0
012345672829 012345672829
iterations iterations
—+— mloUy —e— mloU,, Wy Wy

Figure 5: Performance comparison (%) of VMRIL (SeqPAN)
w/ and w/o pretrained action model in different iterations
on two datasets.

4.4.3  Qualitative Results. We further perform qualitative analy-
sis on our method so as to enable a better understanding of its
strength. The qualitative results of VMRIL (SeqPAN) on Charades-
STA dataset are reported in Figure 7. According to the patterns and
visualizations of three examples, the localized moments generated
by VMRIL are very close to ground-truth, i.e., more accurate pre-
dictions, which also verifies the effectiveness of iterative learning
and pretrained action localization model. Thanks to BMN model,
the start and end boundaries of pseudo labels are roughly con-
strained. And starting from partial temporal labels are meaningful,
we achieve better performance at low cost of annotation.

4.5 Ablative Studies

We finally conduct ablative experiments to analyze the effectiveness
of different components in our approach. The ablation experiments
presented below are based on three dataset with VMRIL (SeqPAN).

100

N R1@0.3 s R1@0.7

m R1@0.5
80 1 1

mm w NMS
s w/o NMS

60 -

40 1

Accuracy (%)

20 A

0- i
R1@0.3 R1@0.5 R1@0.7 mloU

00 05 10 15 20 25
(o4

(a) Effect of o values (b) Effect of w/ and w/o NMS
Figure 6: The ablation studies of VMRIL (SeqPAN) on
Charades-STA with different o values and under the settings
of w/ and w/o NMS.
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Table 2: Performance comparison (%) of seed label in different
distributions on Charades-STA dataset.

Distribution Mean | R1@0.3 R1@0.5 R1@0.7 mloU
30% 72.19 55.16 34.19 50.18

fix 20% 71.02 47.23 24.49 46.6

10% 68.04 44.17 24.25 45.73

30% 71.64 53.41 33.06 49.9

beta 20% 68.12 44.7 25.24 46.69
10% 66.8 44.81 23.09 44.76

4.5.1 Dataset Collection. As described in Section. 3.1, our reorga-
nized dataset is labeled with fixed duration (fix). For the setting of A,
we conduct experiments with different values. As shown in Table 2,
VMRIL with setting of A = 0.3 achieves a trade-off between few
label cost and satisfying performance. To benefit the VMR model in
real application and relieve the restriction of fixed duration (the an-
notators can label the video clip with various lengths), we propose
a more general situation (beta), where A fits a Gaussian distribution
of p = 0.3. We conduct experiments with this setting as shown in
Table 2, our VMRIL can achieve comparable performance.

4.5.2  Selection of New Pseudo Labels. As shown in Figure 4, setting
the hyper-parameter « as 0.15 helps achieve the best performance
on two datasets. With the higher value of «, the performance of
VMRIL will decrease sharply, since it requires generated pseudo
labels with more overlapping with seed area Ly, -

In Figure 5, We also report the IoU curve of pseudo label and
groundtruth, and IoU of pseudo label and seed area in different iter-
ations. According to the curves, after 5 iterations, the performance
results on three datasets all reach their saturation points in the end.

4.5.3 Effectiveness of VMRIL Components. We also carry out abla-
tion studies on different components of proposed VMRIL method:
(1) For the iterative learning part, we report the performance of

Ground —~Action Start —Action End

Query person turn a Iight on.

BMN L AN S e \/\_/\ R N A\/\,__/ J‘
ot 15 7]
viGa ( 1817 w
ours | £22 20%)

BMN L/’

GT |
ViGA |
ours [

Figure 7: Qualitative results of VMRIL (SeqPAN) on Charades-
STA dataset. BMN represents the start and end curve of pre-
defined action. Compared with ViGA, our proposed VMRIL
can generate more accurate temporal regions.
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Figure 8: Annotation efficiency v.s. performance of different
methods on the ActivityNet dataset.

VMRIL in different iterations. As shown in Figure 5, the perfor-
mance of VMRIL on different datasets keeps steadily increasing
and achieves saturation in around 5 iterations. In iteration 0, the
VMRIL model is only trained with partial temporal labels. (2) For
the utilization of pretrained action localization model BMN, the
performance of VMRIL (SeqPAN) on three datasets will drop 3%
~ 8% in mloU without the pretrained model BMN, as shown in
Figure 5.

To verify the effectiveness of multi-label training, we provide the
ablation studies on w/ and w/o the multi-label training, as shown
in Table 3 below. The performance of VMRIL (VSLNet) on three
datasets will drop 0.64% ~ 1.33% in R1@0.7 without the multi-label
training. There are also ablation studies of ¢ in Figure 6 (a), which
shows the robustness of our method in different value of . In
Figure 6 (b), we provide abaltion studies of ourv method with and
without NMS, which shows that it can achieve better performance
with NMS.

5 IN-DEPTH ANALYSIS

Q1: What is the advantage of seed annotation compared with
other supervisions? There are mainly four different kinds of
annotation: (1) Fully supervised annotation, which requires precise
start and end boundary of each video clip corresponding to the
language query; (2) Weakly supervised annotation, which only
provide the pair relation of video and language query without any
location information; (3) Single-frame annotation, which randomly
select one frame within the groundtruth; (4) Our proposed setting
of partial temporal annotation as seed area.

Overall, the annotation cost of (1) is largest because the temporal
boundary is not so discriminative and needs more time to localize
the start and end timestamp. (2) requires smallest annotation cost
but can not provide enough information, which result in the huge
performance gap between fully-supervised VMR model and weakly-
supervised VMR model. (3) is a compromise solution between (1)
and (2), annotating one frame is at tiny cost compared with precise
start and end boundaries. However, from our point of view, one
frame is not enough for better VMR performance. Finally, (4) is an
evolutionary version of weak label. Since annotating “seed” is not
much harder than annotating a single frame but is much easier than
full-annotation that requires precise “start” and “end”. As shown
in Figure 8, our method VMRIL (SeqPAN) can achieve comparable
performance but requires much fewer annotation costs against
fully-supervised methods.

Wei Ji, Renjie Liang, Lizi Liao, Hao Fei, and Fuli Feng

Table 3: Performance comparison of (%) w and w/o multi-
label training,.

Dataset multi-label | R1@0.3 R1@0.5 R1@0.7 mloU
7153 5323 3355 5059
Charades-STA v 7129 5516 3419 50.18
A ctivitNet 5035 4110 2394 42.94
¥ v 57.83 4024  23.46 42.08
4356 3114 1772  30.68

TA
CoS v 4766 3504  19.05 33.00

Q2: Efficiency analysis of the proposed VMRIL. Our proposed
VMRIL is based on the VMR model (such as SeqPAN, VSLNet).
Our proposed VMRIL which utilizes pretrained action localization
model and iterative learning runs with more parameters during
training. When inferencing, the model size and running speed of
VMRIL keep the same as the baseline VMR model.

Q3: Where does the performance gain come from? New set-
ting or proposed framework? We think both new setting and
proposed method benefit the performance gain. To validate the
effectiveness of proposed framework, we run our VMRIL with the
same single frame annotation as ViGA. Experimental results show
that our proposed VMRIL can still outperform ViGA. Besides, we
conduct experiments of ViGA with our seed label, with more anno-
tated labels as supervision, ViGA can achieve better performance
compared with single frame labels, which is also reasonable.

Q4: What about the generalization ability of the proposed
framework, especially for other relevant datasets? Our pro-
posed VMRIL uses the action localization pretrained model to pro-
vide guidance for the expansion of pseudo label. Action is the atomic
element of complex event. Since the action localization pretrained
model focus on the action related temporal span, it will generate
response for complex event in video sequence. So our proposed
VMRIL will also work on event-based dataset.

6 CONCLUSION

This paper focuses on Video Moment Retrieval task in a new label-
efficient setting. We propose a new pipeline named Video Moment
Retrieval via Iterative Learning (VMRIL). It starts training from the
partial temporal region, which forms a striking contrast to those
methods requiring fully-supervised ground truth. Specifically, we
treat the partial temporal region as seed, and expand the pseudo
label by iterative training. In order to restrict the expansion with
reasonable boundaries, we utilize a pretrained video action model
to provide coarse guidance of video segments. Experimental results
demonstrate the effectiveness of our proposed method, which is
even comparable with some fully-supervised methods but with
fewer annotation costs. In the future, we will explore more label-
efficient methods for VMR and make it closer to real application.
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