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Active Discovering New Slots for Task-oriented
Conversation

Yuxia Wu∗, Tianhao Dai∗, Zhedong Zheng, Lizi Liao†

Abstract—Existing task-oriented conversational systems heavily
rely on domain ontologies with pre-defined slots and candidate
values. In practical settings, these prerequisites are hard to
meet, due to the emerging new user requirements and ever-
changing scenarios. To mitigate these issues for better interaction
performance, there are efforts working towards detecting out-of-
vocabulary values or discovering new slots under unsupervised or
semi-supervised learning paradigms. However, overemphasizing
on the conversation data patterns alone induces these methods to
yield noisy and arbitrary slot results. To facilitate the pragmatic
utility, real-world systems tend to provide a stringent amount
of human labeling quota, which offers an authoritative way to
obtain accurate and meaningful slot assignments. Nonetheless, it
also brings forward the high requirement of utilizing such quota
efficiently. Hence, we formulate a general new slot discovery task
in an information extraction fashion and incorporate it into an
active learning framework to realize human-in-the-loop learning.
Specifically, we leverage existing language tools to extract value
candidates where the corresponding labels are further leveraged as
weak supervision signals. Based on these, we propose a bi-criteria
selection scheme which incorporates two major strategies, namely,
uncertainty-based and diversity-based sampling to efficiently
identify terms of interest. We conduct extensive experiments on
several public datasets and compare with a bunch of competitive
baselines to demonstrate the effectiveness of our method.

Index Terms—New slot discovery, Task-oriented conversation,
Active learning, Language processing

I. INTRODUCTION

W ITH the development of smart assistants (e.g., Alexa,
Siri), conversational systems play an increasing role

in helping users with tasks, such as searching for restaurants,
hotels, or general information. Slot filling has been the main
technique for understanding user queries in deployed systems,
which heavily relies on pre-defined ontologies [1, 2, 3] However,
many new places, concepts or even application scenarios are
springing up constantly [4]. Existing ontologies inevitably
fall short of hands, which hurts the system performance and
reliability. As one of the foundation blocks in ontology learning,
new slot discovery is particularly crucial in those deployed
systems. It not only discovers potential new concepts for later
stage ontology construction or update, but also helps to avoid
incorrect answers or abnormal actions.

Generally speaking, new slot discovery requires handling
two situations properly as illustrated in Figure 1: to recognize
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: Is there a cheap restaurant in the north part of town?
: I'd like to find a west side restaurant that is expensive.
: Bangkok city serves thai food in the centre of town.

: I want a moderately priced restaurant in the east part of town.
: Da Vinci Pizzeria is a cheap italian restaurant in the north area.

Fig. 1: Illustration of the new slot discovery task. It not only
finds new values for predefined slots (e.g., Price range, Area
in solid circles), but also discovers new slots with values
(in dotted circles). The phrases w/o rectangular represent the
known values and new values, respectively.

out-of-vocabulary values for pre-defined slots, and to group
certain related values into new slots (as in dotted circles).
Existing works tend to separate these two situations into
two independent tasks for ease of modeling: (1) In the first
new value discovery task, several pioneering works leverage
character embeddings to handle the unseen words during
training [5] while others harness the copy mechanism for
selection [6]. There are also methods making use of background
knowledge [7, 8]. The core of such methods lies in finding the
patterns or relations of existing values among predefined slots.
(2) For the second new slot scenario, it is more complicated
and requires grouping the values into different slot types even
without knowing the exact number of new slots. To simplify
the problem, Wu et al. [9] proposed a novel slot detection
task without differentiating the exact new slot names. For a
more realistic setting, other researchers adapt transfer learning
to leverage the knowledge in the source domain to discover
new slots in the target domain [10]. They assume that the
slot descriptions or even some example values are available.
However, such availability is still less likely in practice. Hence,
another line of research efforts seek help from existing tools
such as semantic parser or other information extraction tools to
gain knowledge [11]. Nonetheless, such methods suffer from
the noisy nature of dialogue data and require intensive human
decisions in various processing stages and settings.
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The current popular sequence labeling way emphasizes the
relationship patterns in word or token sequences and labels,
which is less sufficient for out-of-scope slots. As the new value
and new slot discovery are inherently intertwined, we propose
to adopt an Information Extraction (IE) fashion to tackle them
concurrently as a general new slot discovery task. Candidate
values are extracted firstly, which are then leveraged to find
group structures. Nonetheless, if we obtain group structures
purely based on data patterns, the resulting slots will tend to be
noisy and arbitrary. Fortunately, a stringent amount of human
labeling quota is usually available to facilitate the pragmatic
utility, which offers an authoritative way to obtain accurate and
meaningful slot assignments. To utilize such quota efficiently,
a viable way is to adopt the active learning (AL) scheme [12]
to progressively select and annotate data to expand our slot set.
In general, existing active learning methods can be categorized
into two major groups based on the sample selection strategy:
uncertainty-based, diversity-based [13]. The former tries to find
hard examples using heuristics like highest entropy or margin
and so on [14, 15], while the latter aims to select a diverse set
to alleviate the redundancy issue [16, 17]. Although there are
works combining these two kinds of strategies and working
well on the sequence tagging task [18, 12], their success is
not directly applicable to our setting, because one sequence
might contain multiple different slots and the goal of finding
new slots is less emphasized in these sequence labeling models
when label sets are known.

In this work, we formulate the general new slot discovery task
in an information extraction fashion and design a Bi-criteria
active learning scheme to efficiently leverage limited human
labeling quota for discovering high-quality slot labels. The IE
task can naturally fit the proposed active learning procedure. It
allows our method to focus on only one of the slots in the input
sentence during the sample selection. Specifically, we make
use of the existing well-trained language tools to extract value
candidates and corresponding weak labels. Being applied as
weak supervision signals, these weak labels are integrated into
a BERT-based slot classification model via multi-task learning
to guide the training process. With the properly trained model,
we further design a Bi-criteria sample selection scheme to
efficiently select samples of interest and solicit human labels.
In particular, it incorporates both uncertainty-based sampling
and diversity-based sampling strategies via maximal marginal
relevance calculation, which strives to reduce redundancy while
maintaining uncertainty levels in selecting samples.

To sum up, our contributions are three-fold:
• We formulate a general new slot discovery task that wraps

up the new value and new slot scenarios. Formatted in
an IE fashion, it benefits from existing language tools as
weak supervision signals.

• We propose an efficient Bi-criteria active learning scheme
to identify new slots. In particular, it incorporates both
uncertainty and diversity-based strategies via maximal
marginal relevance calculation.

• Extensive experiments verify the effectiveness of the
proposed method and show that it can largely reduce
human labeling efforts while maintaining competitive
performance.

II. RELATED WORK

A. Out-of-Vocabulary Detection

New slot discovery aims to discover potential new slots
for conversation ontology construction or update. It is closely
related to the Out-of-Vocabulary (OOV) detection task that
aims to find new slot values for existing slots. Under this
task setting, the slot structures are predefined. For example,
given the slots such as Price range and Area, it aims to find
new values such as moderately priced to enrich the value set.
Liang et al. [5] combined the word-level and character-level
representations to deal with the out-of-vocabulary words. They
treated the characters as atomic units which can learn the
representations of new words. Zhao and Feng [6] leveraged
the copy mechanism based on pointer network. The model is
learned to decide whether to copy candidate words from the
input utterance or generate a word from the vocabulary. Chen
et al. [19] trained BERT [20] for slot value span prediction
which is also capable of detecting out-of-vocabulary values. He
et al. [7] proposed a background knowledge enhanced model to
deal with OOV tokens. The knowledge graph provides explicit
lexical relations among slots and values to help recognize the
unseen values. More recently, Coope et al. [8] regarded the
slot filling task as span extraction problem. They integrate the
large-scale pre-trained conversational model to few-shot slot
filling which can also handle the OOV values.

B. New Slot Discovery

Finding new slots requires proper estimation of the number
and structural composition of new slots. As this is hard, there
are efforts assuming that the slot descriptions of new slots
or even some example values for these slots are available.
These slot description or example values are directly interacted
with user utterances to extract the values for each new slot
individually [21, 22]. However, the over-reliance on slot
descriptions hinders the generality and applicability of such
methods. There are works trying to ignore such information.
For example, Wu et al. [9] proposed a novel slot detection
task to identify whether a slot is new or old without further
grouping them into different classes. The Out-of-Distribution
detection algorithms (such as MSP [23] and GDA [24]) are
leveraged to fulfill the task. However, they only worked on
simulated datasets and the task scenario is oversimplified.

Hence, researchers proposed a two-stage pipeline which first
extracts slot candidates and values using information extraction
tools, and then utilizes various ranking or clustering methods
to pick out salient slots and corresponding values. For example,
Chen et al. [11] combined semantic frame parsing with word
embeddings for slot induction. In the same line, they further
constructed lexical knowledge graphs and performed a random
walk to get slots. Although the language tools provide useful
clues for the later stage slot discovery, such methods suffer from
the noisy nature of dialogue data and the selection, ranking
process requires intensive human involvement. To mitigate
this issues, Hudeček et al. [25] extended the ranking into an
iterative process and built a slot tagger based on sequence
labeling model for achieving higher recall. Nonetheless, the
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model still relies on obtained slots in the former iterative
process which requires intensive human decisions.

C. Active Learning

Active learning (AL) [26] reduces the demand for abundant
labeled data by intelligently selecting unlabeled examples
for iterative expert annotation, demonstrating its value in
various natural language processing tasks [18]. There are
two major sample selection strategies for active learning,
namely, uncertainty-based and diversity-based sampling [17].
Uncertainty-based sampling selects new samples that maximally
reduce the uncertainty the algorithm has on the target classifier
[27]. However, a previous work points out that focusing only
on the uncertainty leads to a sampling bias [14]. It creates
a pathological scenario where selected samples are highly
similar to each other. This may cause problems, especially in
the case of noisy and redundant real-world datasets. Another
approach is diversity-based sampling, wherein the model selects
a diverse set such that it represents the input space without
adding considerable redundancy [28]. Certain recent studies
for classification tasks adapt the algorithm BADGE [17]. It
first computes embedding for each unlabeled sample based on
induced gradients, and then geometrically picks the instances
from the space to ensure their diversity.

More recently, several existing approaches support a hybrid
of uncertainty-based sampling and diversity-based sampling
[13]. For instance, Hazra et al. [12] proposed to leverage sample
similarities to reduce redundancy on top of various uncertainty-
based strategies as a two-stage process. Better performances
achieved signal a potential direction to further reduce human
labeling efforts. At the same time, Shelmanov et al. [29]
investigated various pre-trained models and applied Bayesian
active learning to sequence tagging tasks. Experiments also
showed better performance as compared to those single strategy
based ones. In our work, we take advantage of pre-trained
models such as BERT, and design a Bi-criteria active learning
scheme to possess the benefits of both uncertainty-based and
diversity-based sampling strategy.

The main differences between the proposed method and
the related work are: 1) Our method only needs a few
annotated data rather than extra prior knowledge such as slot
descriptions or example values. 2) Compared with the new slot
detection method, our model further organizes the new slots
into different categories. 3) Compared with the weak supervised
or unsupervised methods, our method mitigates human efforts
such as selecting and ranking the candidate slots. Besides, we
formulate slot discovery as an information extraction task to
better capture the relationship among different values.

III. PROBLEM FORMULATION

A. Background

Current task-oriented dialogue systems heavily rely on slot
filling where an ontology O is usually provided with slots
S and some candidate values. Existing approaches typically
model it as a sequence labeling problem using RNN [30, 31] or
pre-trained language models such as BERT [32, 33]. Given an
utterance X = {x1, x2, · · · , xN} with N tokens, the target of

slot filling is to predict a label sequence L = {l1, l2, · · · , lN}
using BIO format. Each ln belongs to three types: B-slot_type,
I-slot_type, and O, where B- and I- represent the beginning
and inside of one candidate value, respectively, and O means
the token does not belong to any slot.

B. New Slot Discovery in an IE Fashion

Though popular [9, 25], the sequence labeling framework
does not naturally fits the new slot discovery task well. First, the
label set is not known beforehand in realistic settings. Second,
sequence labeling models rely heavily on the linguistic patterns
in utterance and the dependencies among the labels in label
sequence. In fact, the candidate values are diverse in nature,
they may reside in rather different dialogue contexts and show
various linguistic patterns. Hence, it might be hard for sequence
labeling models to take the dependencies between labels in
the sequence into account [34]. Last but not the least, one
utterance usually contains semantics about multiple slots. Thus
the sample selection in active learning methods has to consider
the scores of all tokens in a sentence, which leads to a mixed
measure of the mutual interaction between different slots.

From another perspective, the general new slot discovery
task covers the new value and new slot scenarios, which
naturally fits the information extraction framework where we
first extract value candidates, then dispatch or group them into
different slots. Under this framework, there are many off-the-
shelf language tools available to assist the candidate values
extraction and provide weak supervision signals to further assist
the grouping stage [25].

1) Candidate Value Extraction and Filtering: To reduce
the labeling effort, we first extract candidate values which
can be a single word or a span of words conveying important
semantics. Inspired from [25], we adopt a frame semantic parser
SEMAFOR [16, 35] and named entities recognition (NER) to
extract candidate values1. The tools also provide labels for the
candidate values which can be regarded as weak signals for
further model design. Trained on a general corpus, the semantic
tools produce some irrelevant values for conversational search.
We filter these using rules, excluding stop words, low-frequency
words, and less useful terms like ‘then’, ‘please’ and so on.

2) Our New Slot Discovery Formulation: Our method
tackles the limited labeled training data challenge in new
slot discovery, reflecting real-world scenarios for developing
conversational agents in novel domains or new task settings. We
work with a set of limited labeled data Dl and a large amount
of unlabeled data Du containing new slot types. We design
an active learning scheme to efficiently make use of limited
human labeling resources for accurate new slot discovery.

Formally, given a candidate value Xi+k
i = {xi, · · · , xi+k}

with k + 1 tokens extracted from the utterance X, our goal is
to identify the slot type y of Xi+k

i . Although we only have
limited labeled data Dl which contains a set of (Xi+k

i , X , y)
tuples at the beginning, we will iteratively select and annotate
a sample set S from Du to enrich the data Dl in our active
learning scheme. Besides, we also have the weak label yweak

1If the same token span is labeled multiple times by different annotation
sources, the span is more likely to be considered as a candidate term.
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Fig. 2: The framework of the proposed Bi-criteria active learning scheme. For each iteration, the labeled data is utilized to train
the multi-task network T . The unlabeled data is applied to select samples via Bi-criteria sampling strategy containing both
uncertainty and diversity criteria, where BALD is an abbreviation for Bayesian Active Learning by Disagreement. Then the
selected samples are annotated and applied to update the dataset for the next loop.

for the candidate value Xi+k
i which provides additional useful

semantics for our model training and sample selection.
Note that the general new slot discovery task not only covers

existing ontology update which identifies new candidate values
and label them correctly to existing ontology Oold, but also
includes ontology expansion where new slots are added to
Oold to get Onew.

IV. BI-CRITERIA ACTIVE LEARNING SCHEME

The proposed Bi-criteria active learning method is illustrated
in Figure 2. The dataset contains labeled data and unlabeled
data which is updated iteratively via active learning scheme.
There are two stages in the iteration loop: multi-task network T
training via labeled data and bi-criteria sampling from unlabeled
data. The network T contains a BERT-based feature extractor
and classifier layer. For feature extraction, we concatenate
the representations of the candidate values and their context
( the original sentence with the slot-value span replaced
with [mask] per token). We train the multi-task network
under the supervision of the weak signals from the NLP
tools and the ground truth slot types of the candidate values.
For the second stage, we first obtain the distributions of
classification probabilities and representation features via the
trained model T . Then a Bi-criteria strategy is specially
designed to incorporate both uncertainty and diversity to select
samples. The uncertainty is measured by the characteristics of
the probability ŷslot via different strategies. The diversity is
computed based on the representations of each sample. Two
criteria are integrated by a balanced weight. Finally, the selected
samples Su are annotated and are applied to update the dataset

for the next loop. We will introduce more details about our
framework in the following parts.

The active learning loop is illustrated in Algorithm 1 for
better understanding. The classification model T is first trained
on 5% of the whole training dataset denoted as Dl. And then
different active learning strategies can be applied to select
unlabeled samples. After that, we annotate the selected samples
S and add them into the labeled dataset Dl. The iteration will
stop when |Du| = 0 which means there is no more unlabeled
data (or stop when model performance no longer increases).

Algorithm 1: Active Learning Scheme
Data: D: training dataset
Input: Dl ← 5% of dataset D ; // labeled data

Du ← D −Dl ; // unlabeled data

Output: Well-trained model T for new slots discovery
Initialization: Dl

T ←TRAIN(Dl) ; // train with init labeled data

/* Now starts active learning */

while not converged and |Du|>0 do
/* selection */

Su ← SelectBi−Criteria(Du, T )
S ← Annotate(Su)
Dl ← Dl ∪ S ; // update labeled data

Du ← Du \ S; // update unlabeled data

T ←Re-TRAIN(Dl)
return T
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A. Multi-task Network T
We first explain the base classification model T . As

mentioned before, we have some limited labeled data with
ground truth values extracted from the input utterance and
the corresponding slot types. We also obtain the candidate
values and their weak labels by language tools. To effectively
utilize the weak labels, we introduce a multi-task network
to integrate them. Generally speaking, the model contains a
feature extractor and a classifier layer with two branches, one
for ground truth slot label prediction and the other for weak
label prediction. Both branches share the same parameters of
the feature extractor and are trained simultaneously. We also
try an alternative way of using weak labels where two tasks are
conducted chronologically. We show the comparison results
and detailed analysis in Section V-F3. In the following parts,
we introduce the feature extractor, classifier layer, and the loss
function of the multi-task network.

1) Feature Extractor: Feature extraction for candidate value
is the foundation of the subsequent processing for new slot
discovery. Both the exact value and its context are essential
for a task-oriented conversation system to understand the
intents of users. Therefore, we integrate the two kinds of
representations for each candidate value to facilitate further
slot discovery. Specifically, we apply the pre-trained BERT
model as the backbone for feature extraction. For the inherent
representation, we only consider the token sequence in the
candidate value Xi+k

i . For the context representation, we learn
the pure contextual semantics in the input utterance with the
candidate value masked to avoid its influence. The detailed
process is introduced as follows.

Given a candidate value Xi+k
i = {xi, · · · , xi+k} with k+1

tokens in the utterance X, the inherent representation is the
mean pooling of all the tokens in Xi+k

i :

ui, · · · ,ui+k = BERT (xi, · · · , xi+k), (1)
rinherent = mean_pooling(ui, · · · ,ui+k), (2)

where ui represents the embedding of the token xi obtained
from the BERT model.

For the context representation of the candidate value,
we assume that if two values have the same context, they
should have similar representations for slot discovery. There-
fore we replace the tokens belonging to a specific value
span in the original utterance X with a special token
[mask]. In this way, the utterance is reconstructed as X ′ =
{x1, · · · , ⟨[mask]i, · · · , [mask]i+k⟩, · · · , xn}2. We also adopt
the BERT model to obtain the representation of each token in
X ′. With the self-attention mechanism in BERT, the [mask]
tokens aggregate the contextual semantics of the corresponding
values. Hence, we adopt mean pooling on the output of these
[mask] tokens to obtain the context representation:

e1, · · · , ei, · · · , ei+k, · · · , en = BERT (X ′), (3)
rcontext = mean_pooling(ei, · · · , ei+k),

(4)

2Special tokens such as [CLS] in beginning and [SEP] at end are omitted
for easy illustration.

where ⟨ei, · · · , ei+k⟩ denotes the embeddings of the [mask]
tokens in the last hidden layer of BERT.

We concatenate the inherent and context representation and
apply one linear layer followed by tanh activation as the final
representation of the candidate value as follows:

r = tanh(W1[rinherent; rcontext]T + b1), (5)

where W1 and b1 represent the learnable weights and bias.
2) Classifier Layer: Weak labels are derived from existing

language tools, and they serve as a form of indirect or partial
supervision. These tools extract value candidates from conver-
sational data, providing insights into potential terms of interest.
While supervised labels offer authoritative guidance, weak
labels contribute by capturing nuanced patterns and variations
in user expressions that may not be explicitly annotated in the
supervised data. By incorporating both sources of information,
our method gains a more comprehensive understanding of the
conversational domain. The weak labels act as a supplementary
source, helping the model generalize better to out-of-vocabulary
terms and diverse conversational patterns. This synergy between
weak and supervised labels enables our approach to navigate the
challenges of real-world conversational search systems more
effectively, striking a balance between authoritative guidance
and adaptability to diverse user expressions. Thus we design
two classifiers in the multi-task network. Specifically, we
introduce two independent fully-connected layers to map the
representation into the probabilities over ground truth slot labels
and weak labels given by language tools, i.e.:

ŷ′
slot = Softmax(W2r

T + b2), (6)

ŷweak = Softmax(W3r
T + b3), (7)

where W2, W3, b2 and b3 represent the learnable weight
matrices and biases; ŷ′slot and ŷweak represent the predicted
probability over all slot labels and weak labels respectively.

3) Loss Function: It is worth noticing that not all the slot
labels may have been discovered during training so we apply
a label mask to prevent the leakage of unknown labels:

ŷslot = ŷ′
slot ⊙m, (8)

where m is a vector with the same dimension as ŷ′slot. Each
element m(i) equals 1 if slot label i is known and 0 if unknown.
The symbol ⊙ denotes element-wise multiplication.

Finally, for each sample, given two predicted probability
distributions ŷslot and ŷweak, the final loss is constructed as:

Lfinal = (1− α)L(ŷslot, yslot) + αL(ŷweak, yweak), (9)

where L represents the cross-entropy loss; yslot and yweak

represent one-hot vectors of the slot label and the weak label
of the sample respectively; the hyperparameter α adjusts how
much weak supervision loss contributes to the final loss.

B. Uncertainty-based Criteria

In this section, we introduce three commonly-used
uncertainty-based active learning strategies. We test the
performance of each and integrate them into the proposed
Bi-criteria active learning scheme to find the best setting.
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Entropy Sampling: Given the predicted probability distribution
ŷslot, the entropy score will be:

Centropy = −
∑
i

ŷ
(i)
slotlog(ŷ

(i)
slot), (10)

where i denotes each dimension of these vectors. We select
samples where Centropy ≥ τe, where τe is a hyperparameter.

Margin Sampling: Margin score is defined as the difference
between the highest probability yslot and the second highest
probability ỹslot obtained from the predicted ŷslot, i.e.,:

Cmargin = yslot − ỹslot. (11)

This strategy tries to find hard samples where Cmargin ≤ τm,
where τm is a hyperparameter.

Bayesian Active Learning by Disagreement (BALD): As
discussed in [37], models with activating dropout produce
a different output during multiple inferences. BALD [38]
computes model uncertainty by exploiting the variance among
different dropout results. Suppose ytslot is the best scoring
output for X in the t− th forward pass and T is the number
of forward passes with a fixed dropout rate, and then we have:

CBALD = 1− count(mode(y1slot, y
2
slot, · · · , yTslot))

T
, (12)

where the mode(·) operation finds the output which is repeated
most times, and the count(·) operation counts the number of
times this output was repeated. This strategy selects unlabeled
samples with CBALD ≥ τb, where τb is a hyperparameter.

C. Infusing Diversity

As shown in Figure 3(a), simply relying on uncertainty-based
criteria would invite the redundancy problem where samples
of similar semantics and context are selected. To address this,
we infuse diversity into the sampling strategy. Inspired by
Maximal Marginal Relevance (MMR) in Information Retrieval
[39], we develop a Bi-criteria sampling method which selects

those unlabeled samples with high uncertainty and also diverse
in meaning at the same time (Figure 3(c)). If we adopt the
margin score as the uncertainty score, then the Bi-criteria score
for each unlabeled sample q should be:

Cbi−criteria = −βCmargin(q)− (1− β)max
p∈P

Sim(rpl , rqu),
(13)

where P is the set of all labeled samples and p is the index
of the labeled sample; r is the representation of the sample
obtained from Equation (5); Sim stands for the cosine similarity
between two representation vectors; β is the hyperparameter
that controls the contribution of uncertainty and diversity.
Specially, when β is set to 0, we get the purely diversity-
based score as:

C ′
diversity = −max

p∈P
Sim(rpl , r

q
u). (14)

Intuitively, the Diversity Sampling selects unlabeled samples
by their distances from the nearest labeled sample in the
feature space (Figure 3(b)). The larger that distance is, the
more different in meaning the sample is from labeled sample
sets. On the other hand, when β is set to 1, Bi-criteria will
be reduced to Margin Sampling, where diversity is no longer
taken into account.

V. EXPERIMENTS

A. Datasets

We adopt the datasets from [25], excluding CamRest and
Cambridge SLU due to limited slot numbers. The statistics
are detailed in Table I, with the known slots derived from the
initial 5% randomly labeled data.

B. Implementation Details

Our model employs the “bert-base-cased” BERT version
[20], optimizing with Adam [40] and a base learning rate of
5e-5. Linear decay is applied following [20]. The number of
max initial training epochs is 30 and the batch size is 128. For
each follow-up active learning iteration, we fine-tune the model
on the updated labeled training set for two epochs following

(a) Uncertainty (b) Diversity (c) Bi-criteria

Labeled samples, class A Unlabeled samples Selected samples to be labeled Distance to the nearest labeled sample Decision boundaryLabeled samples, class B

Fig. 3: The selected samples via different criteria. (Adapted from [36, Figure 3.9, Figure 4.1 and Figure 5.1].)
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TABLE I: The statistic information of three datasets

Dataset Domain #Samples #Slots
Known New Total

ATIS Flight 4,978 54 25 79
WOZ-attr Attraction 7,524 4 4 8
WOZ-hotel Hotel 14,435 4 5 9

[12]. Each dataset is divided into training / testing / validation
sets (0.8/0.1/0.1). A random 5% of the whole training set is
chosen as a warm-up dataset. At each active learning iteration,
2% of new training samples are selected for annotation. For
selection strategies based on the Monte Carlo dropout, we
make five stochastic predictions.

C. Evaluation Metric

We evaluate the performance via the widely used classifica-
tion metric, i.e., F1-score [41]. Suppose the ground-truth slot
values are M1,M2, ...,Mn, where n denotes the number of
slots. The predicted values are E1, E2, ..., En. For each slot type
i, we first calculate the precision and recall score as:

Pi =
|Mi ∩ Ei|
|Ei|

, (15)

Ri =
|Mi ∩ Ei|
|Mi|

. (16)

Then the final F1 score is computed as:

F1 =
2PR

P +R
(17)

P =

n∑
i=1

|Ei|∑n
j=1 |Ej |

Pi, (18)

R =

n∑
i=1

|Mi|∑n
j=1 |Mj |

Ri. (19)

Since the F1 score is calculated based on slot value spans,
it is also called Span-F1 in this paper.

D. Competitive Methods

We compare our method with two groups of baselines:
active learning methods and semi-supervised methods with
21% randomly labeled data. We utilize the same backbone for
different methods for fair comparison.

Active learning methods: (1) Random: The active learning
method with random sampling strategy. (2) Uncertainty-based
sampling: We compare our methods with several uncertainty-
based strategies mentioned before including Entropy, Margin
and BALD sampling. (3) Diversity-based sampling: As men-
tioned before, we set β as 0 to achieve the pure diversity
sampling method. (4) Hybrid sampling: Active2 Learning
[12] is a two-stage hybrid sampling method. It first utilizes
an uncertainty-based criterion to select a coarse sample set.
Then an external corpus is adopted to assist the clustering
step in order to ensure the diversity. To adapt [12] for a fair

comparison, we choose the Margin Sampling as the uncertainty-
based criterion. Then we naturally apply the weak labels
obtained from the language tools to replace the extra clustering
step in the second stage.

Semi-supervised methods: We compare our method with
a semi-supervised new slot discovery model named SIC [42]
which is designed by incremental clustering. As we formulate
the new slot discovery in an IE fashion, we actually transform
the problem into an instance (one value candidate and its
context) class discovery task which is rather close to the
intent discovery setting. Hence, we also compare with the
semi-supervised intent discovery methods CDAC+ [43] and
DeepAligned [44]. We adapt them to our new slots discovery
task since they are designed as a classification scheme.

LLM-based methods: In the era of large language model
(LLM), models such as ChatGPT [45]3 have shown excellent
performance in open-domain information extraction. Consid-
ering that we reformulate the new slot discovery in an IE
fashion, we compare our method with several LLM models
including ChatGPT and LLaMA [46] with few-shot learning.
We employ the ChatGPT-3.5 and LLaMa-7B versions with few-
shot settings for the task of new slot discovery with instruction
template followed by [47]. To establish a fair comparison, we
randomly select the same number of slots as known slots and
proceed to randomly select 5 samples as prompt samples.

E. Quantitative Results

1) Active v.s. Semi-supervised: We report the results com-
pared with semi-supervised methods in Table II. We can observe
that our method outperforms all the semi-supervised methods
on all three datasets. The proposed method surpasses the
second-best method on ATIS, WOZ-attr, WOZ-hotel by 21.5%,
7.84%, and 20.69% respectively. The result demonstrates the
effectiveness of using active learning and the strength of human
labeling efforts. It is also shown that the SIC method has better
performance than CDAC+ and DeepAligned. Specifically, SIC
outperforms DeepAligned by 3.16%, 3.69%, 4.39% respectively
on ATIS, WOZ-attr, and WOZ-hotel. It is worth noticing that
there is a huge performance drop for the two methods on
WOZ-hotel dataset. We suspect it is attributed to the fact that
the distribution of the WOZ-hotel dataset is difficult to fit,
especially for the CDAC+ method which overemphasizes the
pairwise similarity as prior knowledge.

We note that the performance of the LLM models lags
behind that of other methods. This disparity can be attributed
to the LLM model’s reliance on pre-training on general corpora,
making it less tailored for the specific challenges posed by the
novel slot discovery task within the target-oriented conversation
domain. This highlights the importance of domain-specific fine-
tuning to enhance the model’s efficacy. ChatGPT consistently
outperforms LLaMA across various datasets. This underscores
the effectiveness of ChatGPT, particularly evident in the ATIS
dataset characterized by a complex schema ontology.

2) Bi-Criteria v.s. Other Active Strategies: The results
of experiments on three public datasets with different active
learning strategies are presented in Figure 4. Due to the intrinsic

3https://chat.openai.com
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Fig. 4: The results of different active learning strategies on the three public datasets. All methods start from the same initial
training checkpoint over 5% randomly sampled instances. These plots have been magnified to highlight the regions of interest.

TABLE II: Comparison with other competitive semi-supervised
methods. Here we provide the Span-F1 score.

Method ATIS WOZ-attr WOZ-hotel
CDAC+ [43] 60.07 58.00 16.51
DeepAligned [44] 63.30 66.72 43.86

SIC [42] 66.46 70.41 48.25
LLaMA [46] 18.19* 44.17 30.86
ChatGPT [45] 71.23* 56.12 43.09
Ours (Bi-Criteria) 87.96 78.25 68.94

* Note that due to the complexity of ATIS dataset, we supply the
LLM with the set of slot names in the instruction template and request
it to select the appropriate slot name.

discrepancy among datasets, we set the α in Equation (9) for
each dataset differently (0.05 on ATIS and WOZ-attr, 0.1 on
WOZ-hotel). As seen, the F1 scores significantly vary among
different active learning strategies, and Bi-criteria generally
performs the best on all three datasets in terms of accuracy and
stability. The mean of differences between the best score of
bi-criteria and the best scores among other sampling strategies
over all sampling steps is 0.61% on ATIS and 0.95% on WOZ-
attr. On WOZ-hotel, though surpassed by BALD and Hybrid
strategy at the 17 and 21 percent stages, Bi-criteria exhibits
performance with less fluctuation thus better stability.

As expected, Random Sampling strategy is generally over-
whelmed by most active learning strategies most of the time,
since neither redundancy nor diversity is concerned during the
data selection. However, this tendency is less conspicuous on
WOZ-attr, where Entropy Sampling and BALD perform worst.

Note that Margin Sampling and Diversity Sampling are the
special cases of the Bi-criteria strategy when β in Equation (13)
is set to β = 1 and β = 0 respectively. It is easily observed
from Figure 4 that Bi-criteria strategy outperforms both of the
strategies in Span-F1 and stability. As the mixture of Margin
Sampling and Diversity Sampling, Bi-criteria takes advantage
of both uncertainty and diversity. It indicates that these two
strategies are both essential components in terms of active
selection and impact the results in a cooperating way to some
extent. Further analysis could be found in Subsection V-F2.

F. Ablation Studies and Further Analysis

1) Effect of hyperparameter α: We fix the β in Equation (13)
and adjust α in Equation (9) to see its effect on the performance
of Bi-criteria active learning strategy. The hyperparameter α
indicates the proportion of weak supervision loss in the final
loss. According to our observation, the α tends to have a
relatively small effect on the performance compared with other
parameters and therefore only four value settings are tested
and shown here in Figure 5.

As is seen from the line charts in Figure 5, tuning α to 0.05
leads to the performance with both better Span-F1 and stability
compared with other α settings on ATIS and WOZ-attr while
α at 0.1 results in the best stability and relatively high Span-F1
on WOZ-hotel. Moreover, method with α at 0 does not perform
best on all three datasets, which validates the usefulness of
weak supervision. The mean of differences between the Span-
F1 of the selected α (red line in the graphs) and the Span-F1
of α at 0 over all active learning steps is 0.36%, 1.61%, 0.36%
on ATIS, WOZ-attr, and WOZ-hotel respectively. This result
proves that weak supervision indeed boosts the performance
of model on our task, thus necessitating the adoption of our
multi-task network structure.

However, the performance does not necessarily improve
as the proportion of weak supervision grows higher. This
tendency is easily observed from the results on ATIS, where the
performance declines as α grows bigger from 0.05. Therefore,
finding an appropriate weight for weak supervision is critical
to our multi-task network.

2) Effect of hyperparameter β: We also study the effect
of the β in Equation (13). Note that β = 0 and β = 1 are
equivalent to purely Diversity Sampling and Margin Sampling
respectively, performances of which have been shown in
Figure 4. In general, the Bi-criteria method incorporating both
uncertainty-based and diversity-based strategies tends to yield
better results compared to using either strategy alone. Moreover,
the weights of these two aspects also exert certain influence
on the performance. As Figure 6 shows, the Bi-criteria method
achieves satisfying results when β is set to 0.9 on ATIS and
WOZ-hotel and 0.7 on WOZ-attr. Experiments with β below
or equal to 0.5 generally achieve poor results compared to
settings with higher β. This indicates that uncertainty actually
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Fig. 5: Ablation study of α on three public datasets. All methods start from the same initial training checkpoint over 5%
randomly sampled instances. These plots have been magnified to highlight the regions of interest.

9 11 13 15 17 19 21
Percentage of labeled data

78

80

82

84

86

88

Sp
an

-F
1

=0.1
=0.3
=0.5
=0.7
=0.9

(a) ATIS

9 11 13 15 17 19 21
Percentage of labeled data

66

68

70

72

74

76

78

Sp
an

-F
1

=0.1
=0.3
=0.5
=0.7
=0.9

(b) WOZ-attr

9 11 13 15 17 19 21
Percentage of labeled data

64

65

66

67

68

69

Sp
an

-F
1

=0.1
=0.3
=0.5
=0.7
=0.9

(c) WOZ-hotel

Fig. 6: Ablation study of β on the three public datasets. All methods start from the same initial training checkpoint over 5%
randomly sampled instances. These plots have been magnified to highlight the regions of interest.

contributes more to the overall performance. However, the
diversity signal is still indispensable since it helps to achieve
results that Margin Sampling itself cannot.

3) Comparison with different kinds of weak supervision:
We also explore different ways of using weak supervision. The
key goal of weak supervision is to make use of existing weak
labels to facilitate our task. In our proposed method, weak
supervision is implemented in a multi-task fashion. Labels
given by language tools are adopted to conduct an individual
classification task, whose loss contributes to the final loss. The
alternative way is to pre-train the BERT model with these labels
for classification first, and then fine-tune the BERT parameters
for the new training phase for our new slot discovery task with
new classifier head.

TABLE III: Comparison with different kinds of weak supervi-
sion on three datasets. Here we provide the Span-F1 score.

Method ATIS WOZ-attr WOZ-hotel
Start End Start End Start End

no weak. 73.21 87.71 58.14 75.38 59.61 68.26
pretrain 74.61 87.85 59.21 74.15 61.86 67.95
multi-task 73.34 87.96 59.84 78.25 58.60 68.94

Table III shows the results under different kinds of weak
supervision. These results represent the Span-F1 at the start

point (5% labeled data) and the endpoint (21% labeled data)
of the active learning process on three datasets. It can be seen
that methods with weak supervision (pretrain and multi-task)
achieve Span-F1 higher than the method without it both at the
beginning and the end of the active learning process in all three
datasets, which again demonstrates the effectiveness of weak
supervision. It is worth noticing that when 5% training data are
labeled, the pretraining method achieves Span-F1 higher than
the second best method by 1.27% and 2.25% on ATIS and
WOZ-hotel respectively. However, when 21% of training data
are labeled, the multi-task method prevails. We can therefore
infer that weak supervision as pre-training may enhance the
starting point but tend to converge at a lower level than weak
supervision as multi-task does in our setting.

4) Case study and error analysis: Upon meticulous exami-
nation of problematic samples, a significant portion of errors
in slot filling arise from slot name misclassifications, falling
into three main categories. In the ATIS dataset, challenges
emerge with directional slots like “fromloc.city_name” and
“toloc.city_name”, highlighting the importance of contextual
information and suggesting potential improvements through
varying weights for values and context. Similar issues occur
with numerical values, where the same value may belong
to different slots. For instance, the model may misclassify
numerical values, such as in “7 people and 5 nights” where
“5” pertains to a new slot labeled "stay." Errors also arise
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with specific location information, involving incorrect value
boundaries or correct values assigned to the wrong slot. For
example, in the utterance “I am looking for information
regarding Magdalene College”, our model annotates only
‘college” instead of the correct location name “Magdalene
College”. Exploring the integration of external knowledge graph
information about locations may address such errors.

5) Time efficiency analysis: As we adopt the BERT
architecture in our work, the time complexity is O(n2) where
n is the sequence length. To evaluate time efficiency, we
conducted experiments on training and testing time across
different methods using a machine equipped with an NVIDIA
RTX 3090 GPU and 16 CPU cores. The results are presented
in Table IV for three datasets. The result demonstrates that
our method’s training time is comparable to SIC, and faster
than CDAC+ and DeepAligned. This efficiency is attributed to
the absence of pair-wise similarity computation and clustering
refinement during training. Notably, our method’s testing time is
considerably faster than other approaches, as it doesn’t require
clustering during testing. Despite increasing dataset size, our
method maintains efficiency, showcasing its effectiveness.

TABLE IV: Comparison of the training and testing time (hours)
of different methods on three datasets.

Method ATIS WOZ-attr WOZ-hotel
Train Test Train Test Train Test

CDAC+ [43] 8.01 0.15 10.01 0.09 9.29 0.26
DeepAligned [44] 8.06 0.14 10.05 0.09 16.10 0.25
SIC [42] 2.34 0.14 1.32 0.10 3.57 0.30
Ours (Bi-Criteria) 2.53 0.05 1.44 0.02 2.72 0.03

VI. CONCLUSION AND FUTURE WORK

In this work, we formulated a general new slot discovery
task for task-oriented conversational systems. We designed a bi-
criteria active learning scheme for integrating both uncertainty-
based and diversity-based active learning strategies. Specifically,
to alleviate the limited labeled data problem, we leverage the
existing language tools to extract the candidate values and
pseudo labels as weak signals. Extensive experiments show
that it effectively reduces human labeling effort while ensuring
relatively competitive performance.

Future work involves exploring signals from abundant
responses in dialogue datasets for guiding the sample selection
process in active learning. Besides, during the training of AL,
we fine-tune the model at each epoch with newly added samples.
With the increase of the trained data, it could be computationally
expensive. A possible way is to solely fine-tune the model on
the newly labeled examples to avoid re-training from scratch.
However, this will encounter the catastrophic forgetting problem
which hurts the performance of the previously seen examples
due to the shifting distribution of newly added samples. In
future work, we will explore a more flexible training strategy
to handle this issue.
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