
Boosting Chart-to-Code Generation in MLLM via Dual
Preference-Guided Refinement

Zhihan Zhang
Singapore Management University

Singapore, Singapore
zhihanzhang.2024@phdcs.smu.edu.sg

Yixin Cao
Fudan University
Shanghai, China

caoyixin2011@gmail.com

Lizi Liao
Singapore Management University

Singapore, Singapore
lzliao@smu.edu.sg

Abstract
Translating chart images into executable plotting scripts—referred
to as the chart-to-code generation task—requires Multimodal Large
Language Models (MLLMs) to perform fine-grained visual parsing,
precise code synthesis, and robust cross-modal reasoning. However,
this task is inherently under-constrained: multiple valid code imple-
mentations can produce the same visual chart, and evaluation must
consider both code correctness and visual fidelity across diverse
dimensions. This makes it difficult to learn accurate and general-
izable mappings through standard supervised fine-tuning. To ad-
dress these challenges, we propose a dual preference-guided refine-
ment framework that combines a feedback-driven, dual-modality
rewardmechanismwith iterative preference learning. Our approach
introduces a structured variant generation strategy and a visual
reward model to efficiently produce high-quality, aspect-aware
preference pairs—making preference collection scalable and su-
pervision more targeted. These preferences are used in an offline
reinforcement learning setup to optimize the model toward multi-
dimensional fidelity. Experimental results show that our framework
significantly enhances the performance of general-purpose open-
source MLLMs, enabling them to generate high-quality plotting
code that rivals specialized chart-centric models and even some
proprietary systems. The code and datasets are publicly available
at https://github.com/Zhihan72/Chart2Code.

CCS Concepts
• Computing methodologies→ Natural language generation;
Computer vision tasks; Reinforcement learning.

Keywords
Multimodal Large Language Model, Chart-to-Code Generation,
Offline Reinforcement Learning, Reward Modelling.

ACM Reference Format:
Zhihan Zhang, Yixin Cao, and Lizi Liao. 2025. Boosting Chart-to-Code
Generation inMLLM via Dual Preference-Guided Refinement. In Proceedings
of the 33rd ACM International Conference on Multimedia (MM ’25), October
27–31, 2025, Dublin, Ireland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3746027.3755596

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM ’25, Dublin, Ireland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3755596

…
xtick_labels = ['DD', 'self', 'DC', 'Silur', 'DC']
label = ['n = 6', 'n = 25', 'n = 13', 'n = 36', 'n = 30']
…
plt.bar(r1, bars1, width=0.8, color='#3498db', label='Alone')
plt.bar(r2, bars2, width=0.8, color='#e74c3c' label='With Himself')
…
plt.ylabel('Count', fontsize=11)
plt.title(‘Partial Representation of Genotype Data’)
…

Please help me convert the reference chart image to a python code.
Reference Chart Reproduced Chart

Executability?

Visual Fidelity?Attributes Correctness?

Type

Layout

Data

Text

Color

Style

Incomplete group labels

Incorrect mapping between color and group

Incorrect Title

Figure 1: An illustrative example of the chart-to-code genera-
tion task, evaluated in dual-modality acrossmultiple aspects.

1 Introduction
Charts serve as an essential medium for conveying structured in-
formation through visual representations, incorporating diverse
visual elements such as colors, textual annotations, legends, and
multi-panel subplots. While charts are widely used across scientific
and analytical domains, understanding and reasoning over them
remains a significant challenge in multimodal research [19]. Recent
advancements in Multimodal Large Language Models (MLLMs)
have demonstrated remarkable capabilities in addressing a wide
range of chart tasks, including chart question answering [22] and
chart-to-text generation [15, 16, 30]. However, these tasks typically
focus on high-level semantic understanding while overlooking the
intricate visual structures embedded in charts, thereby limiting their
evaluation depth and applicability. In response, the chart-to-code
generation task has emerged [28, 40], which requires MLLMs to
jointly perform fine-grained visual parsing, accurate code synthesis,
and robust cross-modal reasoning from a chart image.

The chart-to-code generation task is inherently under-constrained,
presenting unique challenges for MLLMs to learn accurate and gen-
eralizable transformations from visual inputs to executable code
[31]. First, a plotting code and its rendered chart do not follow a
one-to-one correspondence—multiple functionally correct imple-
mentations can produce the same chart while differing in syntax,
plotting logic, or visual configuration. This inherent ambiguity
limits the effectiveness of standard supervised fine-tuning (SFT),
which relies on exact matches to a single reference and fails to

https://doi.org/10.1145/3746027.3755596
https://doi.org/10.1145/3746027.3755596
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746027.3755596

MM ’25, October 27–31, 2025, Dublin, Ireland Zhihan Zhang, Yixin Cao, and Lizi Liao

account for the diversity of valid outputs across both code and
visual modalities. Second, chart construction depends on a complex
combination of visual aspects—including chart type, color, text, lay-
out, style, and underlying data—that together determine the chart’s
appearance and semantics. This diversity further complicates the
learning objective, as models must capture subtle variations across
multiple dimensions to produce faithful code. Recent studies have
shown that existing open-source MLLMs often generate incorrect
or non-executable code with limited alignment to the input chart
[44]. These findings highlight the urgent need for an effective train-
ing paradigm that can align MLLMs with the specific demands of
chart-to-code generation.

To tackle these challenges, we propose Chart2Code, a dual
preference-guided refinement framework designed to better align
the training objective with the ultimate goal of chart-to-code gen-
eration task: generating executable code that faithfully reproduces
the target chart. The framework is built upon two key components:
a dual rewarding mechanism and an iterative preference learning
method. The dual rewarding mechanism provides fine-grained super-
vision by evaluating model-generated outputs across both code and
image modalities. The code-side evaluation assesses the structural
integrity and semantic correctness of the generated plotting script,
while the image-side evaluation focuses on visual fidelity, mea-
suring how well the rendered chart preserves the layout, styling,
and perceptual attributes of the reference visualization. Leveraging
this dual-modality feedback, we introduce an iterative preference
learning method that progressively improves the model’s perfor-
mance. This offline Reinforcement Learning (RL) paradigm allows
the evaluation of model-generated outputs against external syn-
thetic codes through dual reward signals. The resulting preference
pairs are then used to fine-tune the model via the Direct Preference
Optimization (DPO) objective [27]. At the end of each iteration, the
updated model is evaluated on a new batch of reference charts for
the subsequent iteration, enabling continuous refinement through
dual-feedback-driven optimization.

To enhance the effectiveness of preference learning, we develop
a structured variant generation strategy and implement a visual re-
ward model trained on a fine-grained, aspect-level feedback dataset
during preference construction. The variant generation process
produces synthetic code samples with controlled deviations from
the gold-standard, enabling the creation of preference pairs that
span varying levels of reproduction. To support accurate and in-
terpretable image-side evaluation, we construct a feedback dataset
comprising aspect-specific explanations and scores, which serve
as supervision for training the visual reward model. This model
enables reliable scoring of visual outputs, reinforcing the preference
learning framework with fine-grained, aspect-aware guidance.

We validate our Chart2Code framework on three base MLLMs
across two benchmarks and multiple evaluation metrics. Results
demonstrate that our framework consistently yields substantial
performance improvements under varying initialization settings,
effectively aligning model outputs with the goal of generating high-
quality, visually faithful plotting code—achieving performance com-
parable to specialized chart-centric models and even some propri-
etary systems. Ourmain contributions are:

• We propose a dual preference-guided refinement framework
(Chart2Code) that aligns MLLMs to the chart-to-code task via
iterative preference learning.

• We design a structured variant generation method and train a
visual reward model, enabling high-quality, aspect-aware prefer-
ence supervision across code and image modalities.

• We achieve performance gains across multiple MLLMs and bench-
marks, showing that our method boosts general-purpose models
to match or surpass chart-specific and proprietary systems.

2 Related Works
Multimodal Large Language Models. MLLMs have emerged as
a transformative paradigm in artificial intelligence, enabling joint
reasoning over visual and textual inputs for a wide range of cross-
modal tasks [6, 41]. Building upon the success of large language
models (LLMs), recent efforts have focused on aligning visual and
textual representations within a shared embedding space to facili-
tate effective multimodal understanding [10, 39]. In parallel, there
has been increasing interest in extending LLMs with multimodal
instruction-following capabilities, allowing them to generate con-
textually grounded responses conditioned on both visual content
and textual prompts [42, 47].
Preference Learning. Preference learning has emerged as a promi-
nent approach to enhance the performance of LLMs by aligning
themwith human preferences, serving as the foundation of RL from
Human Feedback (RLHF) [5, 25, 27]. Recent advancements of offline
preference optimization techniques such as DPO [27], are becoming
more popular for their simplicity and efficiency. Iterative variants
of these offline methods have demonstrated effectiveness in pro-
gressively refining model outputs through repeated optimization
over newly constructed preference pairs [2, 26, 38]. Although RLHF
has been extensively explored in LLMs, its adaptation to MLLMs
remains relatively underexplored. Existing approaches for MLLM
alignment typically construct preference datasets either by leverag-
ing externally annotated synthetic examples [17, 29, 45] or by em-
ploying self-sampling with reward-based ranking [8, 11, 43, 46]. In
the chart-to-code generation setting, we combine model-generated
codes with synthetic variants for iterative preference learning, ex-
ploring how this hybrid approach enhances model performance.
Chart-to-code Generation. The chart-to-code generation task
has recently attracted growing attention in the research community
[13, 40, 44], which requires models to synthesize executable code
grounded in fine-grained visual understanding. Prior work has
focused on constructing benchmarks through large-scale chart
collection and human annotation to evaluate model performance in
this setting [28, 35]. While several studies have explored enhancing
the MLLM’s chart-to-code generation capability via SFT on curated
datasets [12, 20, 44], our work is the first to introduce the offline
RL paradigm to align MLLMs with the inherently dual-modality
and multi-dimensional requirements of chart-to-code generation.

3 Our Method: Chart2Code
We propose Chart2Code, a novel dual preference-guided refine-
ment framework designed to enhance the chart-to-code generation
capabilities of MLLMs by better aligning the training objective

Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement MM ’25, October 27–31, 2025, Dublin, Ireland

Dual Rewarding Mechanism

Image
Reward
Model

Multimodal Large Language Model

Code Reward
Function

LoRA

Color

Style

Type

Data

Layout

Shuffling

Removing

Changing

Changing

Disabled
Text Removing

Aspect Rule#

1
2

3

4
5

Synthetic Variant Model Output
Preferred Code Dispreferred Code

Attri F1#

Avg.

Attri F1

Synthetic Variant Model Output

Title Title
2 Color ID Color ID… … …

81.2 32.9
43.8 53.8

40.6 34.2

Synthetic Variant Model Output

Thus, the final score is 4. Thus, the final score is 3.

1

Color - Shuffled. Score: 0
Text - Same with Gold.

Score: 1

Color - Shuffled. Score: 0

Text - Incomplete. Score: 0

……

…
xtick_labels = ['DD', 'self', 'DC',
'Silur', 'DC']
label = ['n = 6', 'n = 25', 'n = 13', 'n =
36', 'n = 30']
…
plt.bar(r1, bars1, width=0.8,
color='#3498db', label='Alone')
plt.bar(r2, bars2, width=0.8,
color='#e74c3c' label='With Himself')
…
plt.title(‘Partial Representation of
Genotype Data’)
…

…
xtick_labels = ['DD', 'self', 'DC',
'Silur', 'DC’, ‘self’, ‘DD’]
label = ['n = 6', 'n = 25', 'n = 13', 'n =
36', 'n = 30’, ’n=11’, ’n=16’]
…
plt.barh(r1, bars1, width=0.8,
color='#3498db', label='Alone')
plt.barh(r2, bars2, width=0.8,
color='#e74c3c' label='With Himself')
…
plt.title(‘Group Interaction Outcomes
by Genotype’)
…

Variant Generation
Reference Image

 <image_token> You are an expert Python developer who specialises in writing plotting code.
Please refer to the reference image the use matplotlib code to reproduce the reference image.

Aspect-Level
Feedback
Dataset

Iterative Preference Learning

Reward
Model
Training

plotting

Figure 2: Overview of Chart2Code. It consists of two core components: a dual rewarding mechanism that provides fine-grained
feedback via a heuristic F1-based code scorer and a visual reward model, and an iterative preference learning process that
refines the model through DPO optimization. To enable high-quality preference construction, we introduce a structured variant
generation strategy and an aspect-level feedback dataset for training the visual reward model in image-side evaluation.

with the task’s inherently dual-modality and multi-dimensional
nature. The framework comprises two core components: 1) dual-
modality and fine-grained rewarding mechanism, which delivers
fine-grained feedback from both image and code perspectives, guid-
ing the model’s output refinement through multi-dimensional eval-
uation; and 2) iterative preference learning process, which adopts an
offline RL paradigm to collect dual-modality feedback on model
outputs and progressively refine the model in subsequent iterations.

3.1 Problem Setting
Given a chart image 𝐼𝑔

𝑖
and an instruction 𝑥𝑖 (𝑖 ∈ [1, 𝑁]), where 𝑔

denotes the gold-standard reference and 𝑁 represents the size of
the gold code dataset, the target model𝑀𝑡 is tasked with generating
code 𝐶0

𝑖
to replicate the reference image, where 𝑡 is an integer to

indicate the current iteration (𝑡 ∈ [0,𝑇]). Formally,

𝐶0
𝑖 = 𝑀𝑡 (𝐼𝑔𝑖 , 𝑥𝑖) .

This chart-to-code generation task is typically approached with
supervised fine-tuning (SFT), where models are trained to mimic
gold-standard scripts 𝐶𝑔

𝑖
[7, 21, 44]. However, due to the under-

constrained nature of the task—where multiple valid code imple-
mentations can yield visually similar charts—SFT often fails to pro-
vide sufficiently flexible supervision needed to generalize beyond
the reference outputs.

Motivated by recent advancements in RL and preference-based
optimization [11, 27], we adopt a preference learning framework
that allows the model to learn from relative comparisons between

diverse outputs. By incorporating fine-grained, dual-modality re-
ward signals 𝑟𝑖—evaluating both the generated code 𝐶0

𝑖
and its ren-

dered image 𝐼0
𝑖
—this approach aligns the training objective more

closely with the true goal: generating executable code that faithfully
reproduces the target chart.

3.2 Dual Rewarding Mechanism
3.2.1 Dual Modality. We propose a dual rewarding mechanism
that provides robust and comprehensive supervision by jointly eval-
uating both the generated code 𝐶0

𝑖
and its corresponding rendered

image 𝐼0
𝑖
. This mechanism produces a code-side reward 𝑟𝐶

𝑖
and an

image-side reward 𝑟 𝐼
𝑖
, each reflecting different but complementary

aspects of output quality. The code-side evaluation focuses on the
internal structure and semantic correctness of the generated script.
It verifies whether the code uses appropriate plotting APIs, encodes
data relationships correctly, and adheres to syntax and logic con-
straints. In contrast, the image-side evaluation emphasizes external
fidelity to the reference visualization, assessing how accurately the
rendered chart reproduces the intended layout, styling, and percep-
tual attributes. This includes aspects such as spatial arrangement
of subplots, font size and position of text labels, color mapping, and
visual balance—features that may not be explicitly captured in the
code structure but are critical to the visual appearance of the chart.

Using this dual reward mechanism, we construct high-quality
preference pairs to guide the preference learning process. Specifi-
cally, we compare two generated outputs 𝐶𝑥

𝑖
and 𝐶𝑦

𝑖
(𝑥 ≠ 𝑦) and

retain the pair only if one sample strictly outperforms the other

MM ’25, October 27–31, 2025, Dublin, Ireland Zhihan Zhang, Yixin Cao, and Lizi Liao

one in both reward modalities—that is, 𝑟𝐶
𝑖,𝑥

> 𝑟𝐶
𝑖,𝑦

and 𝑟 𝐼
𝑖,𝑥

> 𝑟 𝐼
𝑖,𝑦

.
This requirement ensures that preference labels reflect consistent
superiority across both the code and image perspectives.

3.2.2 Fine-grained Reward. We introduce the rewarding methods
for both the code and image modalities to enable fine-grained su-
pervision during preference learning. On the code side, we first
execute each code sample 𝐶 𝑗

𝑖
to ensure it uses appropriate plot-

ting APIs and adheres to basic syntactic and logical constraints.
If execution fails, the sample is assigned a reward score of zero
in both modalities. For executable samples, we compute the code-
side reward using the heuristic F1-based scoring method [28]. This
lightweight approach avoids complex code reasoning by tracing
key semantic attributes during execution—such as color identifiers,
titles, and data tables—which are individually compared to their
counterparts in the gold-standard code using F1 score computation.
The final code-side reward 𝑟𝐶

𝑖,𝑗
is calculated as the average of these

attribute-level F1 scores with a range of 0–100.
On the image side, we evaluate the visual fidelity of the ren-

dered chart 𝐼 𝑗
𝑖
by comparing it to the reference image 𝐼𝑔

𝑖
using a

multi-aspect binary scoring method. This method assigns a binary
sub-score (0 or 1) to each of six predefined visual aspects: chart type,
data, layout, color, text, and style. Each sub-score reflects whether
the corresponding aspect in the generated chart aligns with the
reference, considering all relevant visual cues. The total image-
side reward is computed as the sum of aspect-specific sub-scores:
𝑟 𝐼
𝑖, 𝑗

=
∑6
𝑘=1 𝑟

𝐼
𝑖, 𝑗,𝑘

, 𝑟 𝐼
𝑖, 𝑗,𝑘

∈ 0, 1. To automate this fine-grained eval-
uation, we train a visual rewardmodel𝑀𝑒 to predict the aspect-level
sub-scores based on visual differences between the generated and
reference charts. The model is trained on an aspect-level feedback
dataset, as described in Section 4.2.

3.3 Iterative Preference Learning
We adopt an offline RL paradigm to iteratively guide the model
toward generating executable code that faithfully reproduces the
target chart. In each iteration, we begin with a set of gold-standard
(code, image, instruction) triplets, denoted asD𝑔

𝑡 = {(𝐶𝑔

𝑖
, 𝐼
𝑔

𝑖
, 𝑥𝑖)}𝑁𝑖=1,

along with the current model checkpoint from the previous iter-
ation, 𝑀𝑡 . Based on generated outputs, we construct a dataset of
generated samplesD𝑣

𝑡 = {𝐷𝑣
𝑖
}𝑁
𝑖=1, where each instance 𝐷𝑣

𝑖
consists

of a collection of code–image–reward tuples:

𝐷𝑣
𝑖 = {(𝐶 𝑗

𝑖
, 𝐼

𝑗
𝑖
, 𝑟𝐶𝑖,𝑗 , 𝑟

𝐼
𝑖, 𝑗) | 0 ≤ 𝑗 ≤ 𝑘},

with each𝐶 𝑗
𝑖
representing either a model-generated or synthetically

perturbed code sample (detailed in Section 4.1), and 𝑘 indicating the
total number of samples associated with the 𝑖-th reference example.
Each code sample is paired with its corresponding rendered chart
image and evaluated using the dual rewardingmechanism, resulting
in code-side (𝑟𝐶

𝑖,𝑗
) and image-side (𝑟 𝐼

𝑖, 𝑗
) reward scores.

To construct the preference dataset, we pairwise all combinations
of code samples in 𝐷𝑣

𝑖
and select the preferred sample in each pair

based on their dual reward scores. This results in a preference-
labeled dataset:

𝐷
𝑝

𝑖
= {(𝐼𝑔

𝑖
, 𝑥𝑖 ,𝐶

𝑤𝑚

𝑖
,𝐶

𝑙𝑚
𝑖
) | 1 ≤ 𝑚 ≤ 𝑛 (𝑛−1)

2 },

where 𝐶𝑤𝑚

𝑖
and 𝐶𝑙𝑚

𝑖
denote the winning and losing code samples,

respectively, and𝑛 is the total number of samples in𝐷𝑣
𝑖
. The number

of possible preference pairs is upper-bounded by 𝑛(𝑛 − 1)/2. To
ensure the quality of supervision, we discard any pair where the two
samples receive identical scores in either the code-side or image-
side evaluation, thereby enforcing strict agreement across both
modalities.

Using the preference pairs, we train a new model𝑀𝜃 , leveraging
the previous iteration’s model 𝑀𝑡 as the reference model in the
denominator of DPO loss function [27]. The model parameter 𝜃 is
updated as follows:

L𝐷𝑃𝑂 (𝐶𝑤𝑚

𝑖
,𝐶

𝑙𝑚
𝑖

|𝐼𝑔
𝑖
, 𝑥𝑖) =

− log𝜎

(
𝛽
𝑀𝜃 (𝐶𝑤𝑚

𝑖
|𝐼𝑔
𝑖
, 𝑥𝑖)

𝑀𝑡 (𝐶𝑤𝑚

𝑖
|𝐼𝑔
𝑖
, 𝑥𝑖)

− 𝛽
𝑀𝜃 (𝐶𝑙𝑚

𝑖
|𝐼𝑔
𝑖
, 𝑥𝑖)

𝑀𝑡 (𝐶𝑙𝑚
𝑖

|𝐼𝑔
𝑖
, 𝑥𝑖)

)
,

where 𝜎 is the sigmoid function. At the end of this training, we
obtain the updated model 𝑀𝑡+1 = 𝑀𝜃 , which is then used to
generate data for the subsequent iteration.

In practice, RLHF typically begins by fine-tuning a pre-trained
model on high-quality, task-specific data using supervised learning,
resulting in an initial model 𝑀0 = 𝑀SFT [27, 37]. Following this
paradigm, we train our model on a set of gold-standard samples
D𝑔

0 = {(𝐶𝑔

𝑖
, 𝐼
𝑔

𝑖
, 𝑥𝑖)} prior to initiating our Chart2Code framework,

to mitigate distributional mismatch between the true reference
distribution and the policy distribution used during DPO.

4 Preference Construction
To support effective preference learning, we develop a structured
variant generation strategy that produces code variants with con-
trolled levels of deviation from the gold-standard code. In parallel,
we collect a feedback dataset containing detailed explanations and
aspect-level annotations, which serves as supervision for training
our visual reward model used in fine-grained image-side evaluation.

4.1 Rule-based Variant Generation
The rule-based variant generation strategy constructs a set of code
variants that exhibit controlled levels of deviation from a given gold-
standard script. Starting from a predefined set of visual aspects and
their corresponding transformation rules, we sample a variation
path and employ GPT-4o to generate code variants through pro-
gressive, aspect-level modifications. These synthetically perturbed
variants, together with model-generated outputs, are used to con-
struct preference pairs, effectively bridging the gap between ideal
references and real model behavior.

4.1.1 Aspects and Rules. We develop a structured variant gener-
ation strategy grounded in six well-defined aspects 𝐴 = {𝑎𝑘 : 𝑘 ∈
[1, 6]}, capturing the full spectrum of differences that can arise
between two charts. Specifically, type refers to the detailed chart
format (e.g., donut pie chart, stacked bar chart); data focuses on
the structure and values of the underlying dataset; layout captures
the arrangement and number of subplots; color evaluates the color
schemes applied to different data groups; text includes all textual
elements such as axis labels and titles; and style pertains to aesthetic
properties such as grid lines, borders, and marker shapes.

Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement MM ’25, October 27–31, 2025, Dublin, Ireland

To enable controlled perturbations along each aspect, we define a
corresponding set of transformation rules 𝑅𝑘 = {𝑟 𝑗,𝑘 : 𝑗 ∈ [1, 𝑛𝑘]}
for each𝑎𝑘 . These rules operate on the reference code𝐶

𝑔

𝑖
to generate

diverse variants by selectively modifying, replacing, or removing
relevant components. For example, type transformations are guided
by a predefined dictionary mapping each chart type to its alterna-
tives; data modifications involve deleting, altering, or fabricating
data groups or dimensions; layout changes include rearranging or
omitting subplots; text variations affect group labels, titles, and axis
annotations through rewriting or removal; color alterations involve
shuffling color schemes or reducing color diversity; and style ad-
justments toggle visual elements such as grids, borders, or legends.
This structured and interpretable variation strategy allows us to
generate aspect-specific variants that support consistent preference
supervision and effective model training. The complete definition
of aspects and rules are detailed in supplementary material.

4.1.2 Variation Path Sampling. Given the defined aspects and as-
sociated transformation rules, we sample a variation path for each
gold-standard code, consisting of a sequence of aspect-rule pairs.
Formally, given a reference code 𝐶𝑔

𝑖
, we first sample a sequence of

distinct aspects𝐴𝑖 = {𝑎
𝑖,𝑘

: 1 ≤ 𝑘 ≤ 6}, where each 𝑎
𝑖,𝑘

is uniquely
selected from the defined aspect set. For each selected aspect, we
randomly sample a transformation rule 𝑢

𝑖,𝑘
∈ 𝑅𝑎

𝑖,𝑘̂
, resulting in a

variation path defined as 𝑃𝑣
𝑖
= {(𝑎

𝑖,𝑘
, 𝑢

𝑖,𝑘
) : 1 ≤ 𝑘 ≤ 6}. Certain

aspects, such as type and layout, may be inapplicable depending on
the chart (e.g., non-editable types or absence of multiple subplots),
resulting in variation paths ranging from 4 to 6 steps in length.

4.1.3 Variant Generation. For each gold-standard code 𝐶
𝑔

𝑖
, we

leverage GPT-4o [24] to generate structured code variants along
two randomly sampled variation paths, following the self-instruct
paradigm [34]. Given a variation path 𝑃𝑣

𝑖
, we iteratively apply each

transformation rule in sequence: at step 𝑘 , GPT-4o is provided
with the most recent variant 𝐶𝑘−1

𝑖
, the selected rule 𝑢

𝑖,𝑘
, and an

instruction prompt to generate the next variant 𝐶𝑘
𝑖
. This pertur-

bation process produces a set of progressively modified variants
{𝐶𝑘

𝑖
: 1 ≤ 𝑘 ≤ 6}, where each variant differs from the original

reference code by 𝑘 aspect-level transformations. This structured
generation strategy enables consistent, interpretable preference
ranking across varying levels of visual fidelity. A complete example
of the variation path, variant generation, and the prompt design is
provided in the supplementary material.

4.2 Aspect-level Feedback Collection
To train the visual reward model for our multi-aspect binary scoring
mechanism (Section 3.2.2), we construct an aspect-level feedback
dataset derived from the transformation history of code variants
along sampled variation paths [37]. This dataset captures detailed
explanations of how each variant diverges from its reference across
specific visual aspects, enabling the reward model to learn fine-
grained, aspect-aware reasoning for evaluating visual fidelity in a
structured and interpretable manner.

4.2.1 Feedback Composition. Each training instance in the feed-
back dataset is structured as: (Reference Image, Task Instruction,

Table 1: Distribution of numbers of gold codes, variants, and
preference (Pref.) pairs across iterations.

Phrase Gold Code Variant Pref. Pair

Iteration 1 300 2,752 7,802
Iteration 2 300 2,710 7,680
Iteration 3 300 2,694 7,590
Total 900 11,906 23,072

Generated Image, Evaluation Criteria, Score, Explanation).
Evaluation Criteria prompts the reward model to assign a bi-
nary sub-score to each of the six predefined visual aspects of the
Generated Image, compared with Reference Image. The high-
lighted outputs, Score and Explanation, correspond to the reward
model’s expected predictions: six binary sub-scores and detailed,
aspect-level explanation for each decision, forming the basis of
supervised training for the visual reward model.

4.2.2 Feedback Collection. To construct training data for the re-
ward model, we extract aspect-level scores and explanations from
the transformation history of code variants generated along sam-
pled variation paths byGPT-4o (Section 4.1.3). For example, consider
a variant located at the third step of a variation path, where the
modified aspects include layout (step 1), text (step 2), and style (step
3). We retrieve the corresponding explanations for layout and text
from their respective transformation steps, and collect the explana-
tion for style at the current step. Each of these deviated aspects is
assigned a binary score of 0 to reflect a mismatch with the reference
image. The rest aspects, which remain unaltered, are assigned a
score of 1 and paired with a standardized explanation: The response
meets the requirements in this aspect. To ensure consistency and
clarity across the dataset, each feedback instance is further refined
using GPT-4o to produce well-structured, aspect-specific justifica-
tions in a unified format. A complete example of feedback collection
is detailed in supplementary material.

4.3 Dataset Statistics
4.3.1 Source Data. Our data source consists of the plotting scripts
of ReachQA training set (3,249) [13] and ChartCoder-160k [44], each
serving as a different SFT initialization setting for our Chart2Code
framework. Moreover, we employ the self-instruct method [4]
through GPT-4o to generate gold-standard code-image pairs D𝑔

𝑡

for each iteration. The detailed prompt is provided in the supple-
mentary material.

4.3.2 Preference Dataset Details. Our dataset comprises 11,906
variants, and 23,072 preference pairs (including model’s outputs),
with their distribution across three iterations summarized in Table 1.
Notably, the feedback dataset consists of 3,750 instance, with 10%
reserved for evaluation. During code generation, non-executable
codes are discarded, accounting for 3.9% of the total (excluded from
the above counts). For each gold code, we sample two variation
paths, with a maximum path length of five. The proportion of paths
involving each aspect is as follows: 97.9% for data, 97.2% for text,
97.7% for style, 97.8% for color, 56.0% for type, and 17.3% for layout.
The relatively lower proportions for type and layout are due to

MM ’25, October 27–31, 2025, Dublin, Ireland Zhihan Zhang, Yixin Cao, and Lizi Liao

Table 2: Performance of baselines and trained models across iterations in the Chart2Code framework on two chart-to-code
datasets. The bold content represents the highest value in the category.

ChartMimic Plot2Code

Models Exec. Rate Heuristic
F1

GPT Conti. Multi-
Binary

Exec. Rate Heuristic
F1

GPT Conti. Multi-
Binary

Propriety Multimodal Large Language Models

Gemini Pro Vision 64.2 45.0 38.1 3.47 66.3 18.7 43.9 3.36
Claude-3-Opus 86.4 56.0 45.4 3.62 87.1 27.4 51.9 3.58
GPT-4V 91.4 74.3 68.4 3.87 86.9 31.4 57.1 3.28
GPT-4o-mini 85.6 67.6 70.0 3.95 79.8 28.3 58.6 3.41

Chart-augmented Multimodal Large Language Models

ChartInstruct-7B 1.3 0.4 1.8 0.07 2.5 0.7 1.1 0.05
ChartVLM-L-14B 12.0 3.9 3.4 0.18 15.9 2.0 2.3 0.15
ChartLlama-13B 55.4 11.7 12.6 0.47 80.3 14.5 24.8 1.39

Open-source Multimodal Large Language Models

InternVL2.5-2B 48.8 21.9 22.6 1.31 54.5 11.0 21.5 1.41
InternVL2.5-8B 54.2 23.4 32.1 1.78 79.5 17.2 40.5 2.18
Qwen2-VL-2B 60.9 28.7 29.6 1.01 59.8 17.2 27.6 1.27
Qwen2-VL-7B 62.2 30.0 28.9 1.09 61.4 17.1 26.4 1.69
MiniCPM-Llama3-V2.5 58.2 30.2 24.2 1.21 58.4 16.2 22.3 1.33
LLaVA-v1.6-7B 55.6 23.6 20.2 1.09 60.6 12.8 20.1 1.13
Chart2Code (LLaVA-v1.6-7B)

Initial 3k SFT (𝑀0) 56.2 24.8 23.2 1.38 57.6 11.6 21.5 1.09
Iteration 1 (𝑀1) 58.2 26.9 24.6 1.46 61.2 13.2 23.4 1.21
Iteration 2 (𝑀2) 62.2 27.3 25.5 1.53 64.0 17.8 25.6 1.35
Iteration 3 (𝑀3) 63.2 27.2 25.8 1.52 66.8 19.4 32.8 1.45

Initial 160k SFT (𝑀0) 71.8 62.3 35.6 2.83 73.5 22.2 39.5 2.71
Iteration 1 (𝑀1) 77.2 63.1 38.4 3.15 72.7 20.6 36.4 2.82
Iteration 2 (𝑀2) 79.6 65.3 41.0 3.09 80.8 24.4 42.2 3.28
Iteration 3 (𝑀3) 84.6 69.2 42.1 3.38 83.3 24.8 48.5 3.64

the limited number of images that support type modifications or
involve multiple subplots.

5 Experiment
We validate our Chart2Code framework on open-source MLLMs
across two benchmarks andmultiple evaluationmetrics. To evaluate
the robustness of our framework under different training conditions,
we experiment with two SFT initialization settings using 3k and
160k training examples, respectively. Furthermore, we conduct a se-
ries of ablation studies to evaluate the framework’s generalizability
across model architectures, as well as the individual contributions
of the dual-modality reward mechanism and the preference con-
struction strategy.

5.1 Experimental Settings
5.1.1 Model and Baselines. We evaluate a diverse set of MLLMs
across two categories: (1) Proprietary models, including GPT-4o
[24], GPT-4o-mini [23], Claude-3-Opus [3], and Gemini Pro Vision
[32]. (2) Chart-augmented open-sourcemodels, such as ChartInstruct-
7B [20], ChartLlama-13B [12], ChartVLM-L-14B [36], and ChartCoder-
7B [44]. (3) Latest open-source models, including LLaVA-v1.6-7B

(Mistral version) [18], InternVL2.5-2B, InternVL2.5-8B [9], Qwen2-
VL-2B, Qwen2-VL-7B [33], and MiniCPM-Llama3-V2.5 [41].

We conduct our iterative training framework primarily on LLaVA-
v1.6-7B, and further evaluate its effectiveness through ablation stud-
ies using InternVL2.5-2B and Qwen2-VL-7B. In addition, we employ
Phi-3.5-Vision [1] as the backbone for training the visual reward
model through SFT, leveraging its strong cross-modal reasoning
capabilities and native support for multi-image input.

5.1.2 Evaluation Datasets and Metrics. We evaluate our models
on two widely used chart-to-code benchmarks: ChartMimic [28]
and Plot2Code [35], containing 500 and 132 examples respectively.
For evaluation metrics, we adopt the two metrics from our dual re-
warding mechanism—namely, the heuristic F1-based code scoring
(Heuristic F1) and the multi-dimensional binary scoring (Multi-
Binary) for image fidelity. Additionally, we employ GPT-4o con-
tinuous scoring (GPT Conti.), which has been commonly used in
recent works [28, 40, 44]. This method prompts GPT-4o to assess
the similarity between the generated and reference chart images
using an open-ended, perception-driven evaluation process, assign-
ing a continuous score ranging from 0 to 100 without relying on
strict criteria. The detailed prompts for evaluation are provided in
the supplementary material.

Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement MM ’25, October 27–31, 2025, Dublin, Ireland

(a) 3k SFT Initialisation (b) 160k SFT Initialisation

Figure 3: Rewarding signals during each iteration of
Chart2Code in (1) 3k and (2) 160k SFT initialisation.

5.1.3 Implementation Details. We perform the preference learning
over one epoch per iteration and evaluate two SFT initialization
settings using 3k and 160k training examples, respectively, to assess
the generalizability of the Chart2Code framework under varying
initializing conditions (Section 4.3.1). All training runs adopt consis-
tent LoRA fine-tuning hyperparameters [14], with lora_r = 128
and lora_alpha = 256. The learning rates are set to 2e-4 for SFT
and 2e-5 for DPO optimization, with a global batch size of 8 for all
experiments. A complete record of training environment, settings
and procesures is provided in the supplementary material.

5.2 Main Results
As shown in Table 2, our Chart2Code framework significantly and
consistently improves the performance of the base MLLM across ex-
ecution rate, code quality, and image fidelity under both 3k and 160k
SFT initialization settings. These results demonstrate the robustness
and effectiveness of our framework across varying initialization
conditions. Notably, LLaVA-v1.6-7B achieves an impressive execu-
tion rate of 84.6% under the 160k initialization setting—on par with
GPT-4o-mini—while also delivering substantial gains in both code
quality and visual fidelity across iterations. This demonstrates that
Chart2Code not only improves executability but also more effec-
tively guides models toward generating semantically richer and
structurally accurate code—surpassing the limitations of standard
supervised fine-tuning.

The iteration-wise results in Table 2 demonstrate that our offline
iterative preference learning strategy enables models to achieve
progressively higher performance, yielding substantial improve-
ments in both code generation and visual fidelity. This trend of
refinement is also reflected in the reward signals observed across
iterations. As shown in Figure 3, dual-modality reward scores ex-
hibit consistent upward trajectories under both the 3k and 160k
initialization settings, indicating steady and effective model align-
ment over time. Furthermore, Chart2Code delivers improvements
across all evaluation dimensions, with particularly notable gains
in layout, text content, and chart type accuracy. The framework
also yields positive performance gains across all difficulty levels in
the ChartMimic benchmark, with the most pronounced improve-
ments observed on medium-difficulty samples. These findings are
supported with further evidence in the supplementary material.

Table 3: Ablation study of base MLLMs and rewarding signal
on ChartMimic.

Model Exec. Rate Heuri. F1 GPT Conti. Multi-Binary

InternVL2.5-2B 48.8 21.9 22.6 1.31
Initial SFT 34.2 20.3 19.8 1.43
+ Heuristic F1 48.6 31.4 28.2 1.41
+ GPT Conti. 56.8 31.3 29.2 1.59
+ Multi-Binary 52.2 31.7 29.9 1.61
+ Dual Scoring 53.1 32.7 31.4 1.66

LLaVA-v1.6-7B 55.6 23.6 20.2 1.09
Initial SFT 56.2 24.8 23.2 1.38
+ Heuristic F1 62.2 27.0 24.8 1.41
+ GPT Conti. 62.0 25.9 24.0 1.38
+ Multi-Binary 68.0 26.7 25.2 1.48
+ Dual Scoring 63.2 27.2 25.8 1.52

Qwen2-VL-7B 62.2 30.0 28.9 1.09
Initial SFT 57.6 41.0 30.6 1.28
+ Heuristic F1 60.6 41.5 31.5 1.19
+ GPT Conti. 59.6 40.9 31.4 1.20
+ Multi-Binary 62.8 42.5 32.4 1.35
+ Dual Scoring 62.1 42.9 33.3 1.36

5.3 Ablation Study
We perform extensive ablation studies to assess the contribution of
individual components within the Chart2Code framework across
three base MLLMs. Owing to computational resource constraints,
our ablation experiments are conducted under the 3k supervised
fine-tuning initialization setting and evaluated on ChartMimic.
5.3.1 Model-agnostic Generalization. We validate the generaliz-
ability of our Chart2Code framework across three distinct MLLMs,
including LLaVA-v1.6-7B, InternVL2.5-2B, and Qwen2-VL-7B, as
shown in Table 3. Despite their differing architectures and capaci-
ties, all three models consistently benefit from the dual preference-
guided refinement strategy, showing sustained gains in code correct-
ness and visual alignment under all metrics. These results show that
Chart2Code is not only effective but also model-agnostic—serving
as a plug-and-play training framework capable of enhancing chart-
to-code generation across a diverse range of MLLMs.

5.3.2 Role of Dual Rewarding. We assess the effectiveness of the
dual rewarding mechanism in Chart2Code by comparing it against
single-modality reward configurations. To directly evaluate the
quality of the reward signals, we measure the agreement between
each scoring method and the gold-standard preferences on the feed-
back evaluation set (Section 4.3.2), quantified by the proportion
of preference pairs for which the scoring method selects the same
winner as the ground truth. As shown in Table 4, the proposed dual
scoring approach achieves the highest accuracy at 99.8%, followed
by our multi-dimensional binary scoring method at 96.5%. While
dual scoring yields a smaller set of valid preference pairs due to
its stricter selection criteria, it consistently leads to stronger down-
stream performance across all three MLLMs on the ChartMimic
benchmark (Table 3). Additionally, the proposed multi-dimensional
binary scoring method outperforms GPT-4o-based scoring in both
reward accuracy and downstream model performance across all
evaluated MLLMs. This highlights the advantage of incorporating
explicit, aspect-level reasoning in the feedback generation process,

MM ’25, October 27–31, 2025, Dublin, Ireland Zhihan Zhang, Yixin Cao, and Lizi Liao

(2) Medium(1) Easy (3) Hard

Gold-
standard

Image

Difficulty

Model-
generated

Image

Figure 4: Case study of chart-to-code generation with Chart2Code framework. The three cases are chosen from the three
difficulty levels in ChartMimic respectively.

Table 4: Rewarding accuracy (left) and drop rate (right) during
preference construction under different reward signals.

Reward Signal Prop. w. Corr. Winner Prop. of Dropping

Heuristic F1 94.4 91.2
GPT Conti. 91.2 96.4
Multi-Binary 96.5 94.4
Dual Scoring 99.8 85.7

which produces more reliable and informative reward signals for
guiding preference learning.

5.3.3 Role of Preference Construction. Our iterative trainingmethod
relies on the preference construction using model-generated codes
and synthetic variants, and the preference learning algorithm. To
assess each component’s impact, we conduct an ablation study
with three settings: (1) SFT on Gold - supervied finetuning on all
gold examples; (2) PL on Variants - preference learning on pairs of
synthetic variants; and (3) PL on (Gold, Resp.) - preference learning
on pairs of gold-standard codes and model-generated codes. The
latter two share the same initialization as our method. As shown
in Table 5, our method consistently leads to superior performance.
The inclusion of model-generated codes enables the model to it-
eratively refine its outputs, while synthetic variants serve as a
structured reference that bridges the gap between gold-standard
and self-generated codes. This hybrid approach shows more effec-
tive than relying solely on gold-standard examples, fostering better
adaptation and improved generalization.

6 Case Study
To qualitatively assess the MLLM’s chart-to-code generation ca-
pability guided under our framework, we conduct the case study
in Figure 4 showcasing three representative examples generated
by LLaVA-v1.6-7B trained under the Chart2Code framework with
a 3k SFT initialization. These examples are drawn from the easy,

Table 5: Ablation study of preference learning settings.

Model Exec. Rate Heuri. F1 GPT Conti. Multi-Binary

LLaVA-v1.6-7B 55.6 23.6 20.2 1.09
SFT on Gold 56.2 27.1 24.2 1.05
PL on Variants 52.4 19.3 17.6 0.60
PL on (Gold, Resp.) 49.6 24.9 22.8 0.91
Chart2Code 63.2 27.2 25.8 1.52

medium, and hard difficulty levels in the ChartMimic, respectively.
For the easy-level donut pie chart, the model correctly identifies the
chart type, color scheme, and textual elements, with only a minor
stylistic deviation in legend usage. In the medium-level grouped
bar chart, it preserves the overall layout and textual structure, de-
spite omitting two data groups and mismatching some color-label
associations. For the hard-level multi-panel chart, the model effec-
tively captures the complex layout and structure, though minor
inaccuracies appear in the heatmap’s data and color mapping.

7 Conclusion
We presented Chart2Code, a dual preference-guided refinement
framework that addresses the key challenges of chart-to-code gen-
eration—namely, the under-constrained nature of the task and the
need for multi-dimensional fidelity. By combining dual-modality
reward signals with structured variant generation and aspect-aware
visual evaluation, our method enables scalable, fine-grained prefer-
ence learning through offline reinforcement. Experiments across
multiple MLLMs and benchmarks show that Chart2Code consis-
tently improves execution accuracy and visual alignment, closing
the gap between open-source and proprietary systems. Beyond
these empirical gains, our work highlights the broader potential
of preference-based learning in multimodal settings, especially for
tasks where correctness spans both symbolic and perceptual dimen-
sions. We believe this approach offers a generalizable path forward
for aligning MLLMs with structured generation tasks.

Boosting Chart-to-Code Generation in MLLM via Dual Preference-Guided Refinement MM ’25, October 27–31, 2025, Dublin, Ireland

Acknowledgments
This research is supported by the National Research Foundation,
Singapore under its National Large Language Models Funding Ini-
tiative (AISG Award No: AISG-NMLP-2024-002). This research is
also supported by the Ministry of Education, Singapore, under its
AcRF Tier 2 Funding (Proposal ID: T2EP20123-0052). Any opin-
ions, findings, conclusions, or recommendations expressed in this
material are those of the author(s) and do not reflect the views of
the National Research Foundation or the Ministry of Education,
Singapore.

References
[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad

Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl,
Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin
Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun
Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ro-
nen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del
Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan
Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi,
Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan
Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali
Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel
Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Lil-
iang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka,
Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu,
Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi
Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. 2024. Phi-3
Technical Report: A Highly Capable Language Model Locally on Your Phone.
arXiv:2404.14219 [cs.CL] https://arxiv.org/abs/2404.14219

[2] Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster, Sainbayar Sukhbaatar, and
Jason Weston. 2023. The CRINGE Loss: Learning what language not to model.
In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada,
8854–8874. doi:10.18653/v1/2023.acl-long.493

[3] Anthropic. 2024. The claude 3 model family: Opus, sonnet, haiku. https://www.
anthropic.com/news/claude-3-family

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[5] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy
Scheurer, Javier Rando, Rachel Freedman, Tomek Korbak, David Lindner, Pedro
Freire, Tony Tong Wang, Samuel Marks, Charbel-Raphael Segerie, Micah Carroll,
Andi Peng, Phillip J.K. Christoffersen, Mehul Damani, Stewart Slocum, Usman
Anwar, Anand Siththaranjan, Max Nadeau, Eric J Michaud, Jacob Pfau, Dmitrii
Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Biyik, Anca
Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. 2023. Open
Problems and Fundamental Limitations of Reinforcement Learning from Human
Feedback. Transactions on Machine Learning Research (2023). https://openreview.
net/forum?id=bx24KpJ4Eb Survey Certification, Featured Certification.

[6] Duygu Ceylan, Chun-Hao Paul Huang, and Niloy Jyoti Mitra. 2023. Pix2Video:
Video Editing using Image Diffusion. 2023 IEEE/CVF International Conference on
Computer Vision (ICCV) (2023), 23149–23160. https://api.semanticscholar.org/
CorpusID:257663916

[7] Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong Liu, Zheng Ge, Liang Zhao,
Jianjian Sun, Chunrui Han, and Xiangyu Zhang. 2024. OneChart: Purify the

Chart Structural Extraction via One Auxiliary Token. In ACM Multimedia 2024.
https://openreview.net/forum?id=LagXbTuzYW

[8] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. 2024.
Self-play fine-tuning convertsweak language models to strong language models.
In Proceedings of the 41st International Conference on Machine Learning (Vienna,
Austria) (ICML’24). JMLR.org, Article 256, 22 pages.

[9] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan
Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scaling
up vision foundation models and aligning for generic visual-linguistic tasks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
24185–24198.

[10] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao,
Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. 2023. InstructBLIP:
towards general-purpose vision-language models with instruction tuning. In
Proceedings of the 37th International Conference on Neural Information Processing
Systems (New Orleans, LA, USA) (NIPS ’23). Curran Associates Inc., Article 2142,
18 pages.

[11] Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, Quanquan Gu, James Zou, Kai-
Wei Chang, and Wei Wang. 2024. Enhancing Large Vision Language Models with
Self-Training on Image Comprehension. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems. https://openreview.net/forum?id=
FZW7Ctyjm3

[12] Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, ZhibinWang, Gang Yu, Bin Fu, and
Hanwang Zhang. 2023. ChartLlama: A Multimodal LLM for Chart Understanding
and Generation. arXiv:2311.16483 [cs.CV]

[13] Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2024. Distill Visual Chart Reasoning Ability
from LLMs to MLLMs. arXiv:2410.18798 [cs.CL] https://arxiv.org/abs/2410.18798

[14] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations. https:
//openreview.net/forum?id=nZeVKeeFYf9

[15] Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Leong, Jia Qing Tan, Enamul
Hoque, and Shafiq Joty. 2022. OpenCQA: Open-ended Question Answering with
Charts. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.).
Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
11817–11837. doi:10.18653/v1/2022.emnlp-main.811

[16] Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, AhmedMasry, Megh Thakkar,
Enamul Hoque, and Shafiq Joty. 2022. Chart-to-Text: A Large-Scale Benchmark for
Chart Summarization. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), SmarandaMuresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 4005–4023. doi:10.18653/v1/2022.acl-long.277

[17] Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng
Yang, BenyouWang, Lingpeng Kong, andQi Liu. 2024. VLFeedback: A Large-Scale
AI Feedback Dataset for Large Vision-LanguageModels Alignment. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing,
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association for
Computational Linguistics, Miami, Florida, USA, 6227–6246. doi:10.18653/v1/
2024.emnlp-main.358

[18] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual In-
struction Tuning. In Thirty-seventh Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=w0H2xGHlkw

[19] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. 2022.
ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning. In Findings of the Association for Computational Linguistics:
ACL 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.).
Association for Computational Linguistics, Dublin, Ireland, 2263–2279. doi:10.
18653/v1/2022.findings-acl.177

[20] AhmedMasry, Mehrad Shahmohammadi, Md Rizwan Parvez, Enamul Hoque, and
Shafiq Joty. 2024. ChartInstruct: Instruction Tuning for Chart Comprehension
and Reasoning. In Findings of the Association for Computational Linguistics: ACL
2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for
Computational Linguistics, Bangkok, Thailand, 10387–10409. doi:10.18653/v1/
2024.findings-acl.619

[21] FanqingMeng,Wenqi Shao, Quanfeng Lu, PengGao, Kaipeng Zhang, YuQiao, and
Ping Luo. 2024. ChartAssistant: A Universal Chart Multimodal Language Model
via Chart-to-Table Pre-training and Multitask Instruction Tuning. In Findings
of the Association for Computational Linguistics: ACL 2024, Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,
Bangkok, Thailand, 7775–7803. doi:10.18653/v1/2024.findings-acl.463

[22] Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. 2020.
Plotqa: Reasoning over scientific plots. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 1527–1536.

[23] OpenAI. 2024. GPT-4o mini: advancing cost-efficient intelligence. https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence

[24] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.18653/v1/2023.acl-long.493
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=bx24KpJ4Eb
https://openreview.net/forum?id=bx24KpJ4Eb
https://api.semanticscholar.org/CorpusID:257663916
https://api.semanticscholar.org/CorpusID:257663916
https://openreview.net/forum?id=LagXbTuzYW
https://openreview.net/forum?id=FZW7Ctyjm3
https://openreview.net/forum?id=FZW7Ctyjm3
https://arxiv.org/abs/2311.16483
https://arxiv.org/abs/2410.18798
https://arxiv.org/abs/2410.18798
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2022.emnlp-main.811
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2024.emnlp-main.358
https://doi.org/10.18653/v1/2024.emnlp-main.358
https://openreview.net/forum?id=w0H2xGHlkw
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2024.findings-acl.619
https://doi.org/10.18653/v1/2024.findings-acl.619
https://doi.org/10.18653/v1/2024.findings-acl.463
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/hello-gpt-4o

MM ’25, October 27–31, 2025, Dublin, Ireland Zhihan Zhang, Yixin Cao, and Lizi Liao

[25] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training lan-
guage models to follow instructions with human feedback. In Proceedings of
the 36th International Conference on Neural Information Processing Systems (New
Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article
2011, 15 pages.

[26] Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar
Sukhbaatar, and Jason E Weston. 2024. Iterative Reasoning Preference Optimiza-
tion. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=4XIKfvNYvx

[27] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct Preference Optimization: Your Language
Model is Secretly a Reward Model. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems. https://openreview.net/forum?id=HPuSIXJaa9

[28] Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu,
Xinyu Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and
Yujiu Yang. 2025. ChartMimic: Evaluating LMM’s Cross-Modal Reasoning Capa-
bility via Chart-to-Code Generation. In The Thirteenth International Conference
on Learning Representations. https://openreview.net/forum?id=sGpCzsfd1K

[29] Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang
Shen, Chuang Gan, Liangyan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer,
and Trevor Darrell. 2024. Aligning Large Multimodal Models with Factually
Augmented RLHF. In Findings of the Association for Computational Linguistics:
ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association
for Computational Linguistics, Bangkok, Thailand, 13088–13110. doi:10.18653/
v1/2024.findings-acl.775

[30] Benny Tang, Angie Boggust, and Arvind Satyanarayan. 2023. VisText: A Bench-
mark for Semantically Rich Chart Captioning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 7268–7298. doi:10.18653/v1/2023.
acl-long.401

[31] Leitian Tao, Xiang Chen, Tong Yu, Tung Mai, Ryan Rossi, Yixuan Li, and Saayan
Mitra. 2024. CodeLutra: Boosting LLM Code Generation via Preference-Guided
Refinement. arXiv:2411.05199 [cs.CL] https://arxiv.org/abs/2411.05199

[32] Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal Models.
arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.11805

[33] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin
Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du,
Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang
Lin. 2024. Qwen2-VL: Enhancing Vision-Language Model’s Perception of the
World at Any Resolution. arXiv preprint arXiv:2409.12191 (2024).

[34] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language Mod-
els with Self-Generated Instructions. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Com-
putational Linguistics, Toronto, Canada, 13484–13508. doi:10.18653/v1/2023.acl-
long.754

[35] Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu
Lu, Ying Shan, and Ping Luo. 2024. Plot2Code: A Comprehensive Benchmark

for Evaluating Multi-modal Large Language Models in Code Generation from
Scientific Plots. arXiv:2405.07990 [cs.CL] https://arxiv.org/abs/2405.07990

[36] Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou,
Zijun Chen, Min Dou, Botian Shi, Junchi Yan, et al. 2024. ChartX & ChartVLM:
A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning.
arXiv preprint arXiv:2402.12185 (2024).

[37] Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu,
Heng Huang, and Chunyuan Li. 2024. LLaVA-Critic: Learning to Evaluate Multi-
modal Models. arXiv:2410.02712 [cs.CV] https://arxiv.org/abs/2410.02712

[38] Wei Xiong, Hanze Dong, Chen Ye, Han Zhong, Nan Jiang, and Tong Zhang.
2023. Gibbs Sampling from Human Feedback: A Provable KL- constrained Frame-
work for RLHF. ArXiv abs/2312.11456 (2023). https://api.semanticscholar.org/
CorpusID:270712238

[39] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid.
2022. Zero-Shot Video Question Answering via Frozen Bidirectional Language
Models. In Advances in Neural Information Processing Systems, Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/
forum?id=9uRS5ysgb9

[40] Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zheng-
hao Liu, Zhixing Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and
Maosong Sun. 2024. MatPlotAgent: Method and Evaluation for LLM-Based Agen-
tic Scientific Data Visualization. In Findings of the Association for Computational
Linguistics: ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, Bangkok, Thailand, 11789–11804.
doi:10.18653/v1/2024.findings-acl.701

[41] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi
Cai, Haoyu Li, Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng
Zou, Haoye Zhang, Shengding Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang
Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2024. MiniCPM-V: A GPT-4V
Level MLLM on Your Phone. arXiv:2408.01800 [cs.CV] https://arxiv.org/abs/
2408.01800

[42] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yi Zhou, Junyan
Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong
Chen, Junfeng Tian, Qiang Qi, Ji Zhang, and Feiyan Huang. 2023. mPLUG-Owl:
Modularization Empowers Large Language Models with Multimodality. ArXiv
abs/2304.14178 (2023). https://api.semanticscholar.org/CorpusID:258352455

[43] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar
Sukhbaatar, Jing Xu, and Jason Weston. 2024. Self-rewarding language models.
In Proceedings of the 41st International Conference on Machine Learning (Vienna,
Austria) (ICML’24). JMLR.org, Article 2389, 19 pages.

[44] Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che,
Zhiyuan Liu, and Maosong Sun. 2025. ChartCoder: Advancing Multimodal
Large Language Model for Chart-to-Code Generation. arXiv:2501.06598 [cs.AI]
https://arxiv.org/abs/2501.06598

[45] Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea Finn, and Huaxiu Yao. 2024.
Aligning Modalities in Vision Large Language Models via Preference Fine-tuning.
arXiv:2402.11411 [cs.LG]

[46] Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chen-
hang Cui, Xiyao Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. 2024. Calibrated
Self-Rewarding Vision Language Models. arXiv preprint arXiv:2405.14622 (2024).

[47] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2024.
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large
Language Models. In The Twelfth International Conference on Learning Represen-
tations. https://openreview.net/forum?id=1tZbq88f27

https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=sGpCzsfd1K
https://doi.org/10.18653/v1/2024.findings-acl.775
https://doi.org/10.18653/v1/2024.findings-acl.775
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.401
https://arxiv.org/abs/2411.05199
https://arxiv.org/abs/2411.05199
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2410.02712
https://arxiv.org/abs/2410.02712
https://api.semanticscholar.org/CorpusID:270712238
https://api.semanticscholar.org/CorpusID:270712238
https://openreview.net/forum?id=9uRS5ysgb9
https://openreview.net/forum?id=9uRS5ysgb9
https://doi.org/10.18653/v1/2024.findings-acl.701
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800
https://api.semanticscholar.org/CorpusID:258352455
https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2402.11411
https://openreview.net/forum?id=1tZbq88f27

	Abstract
	1 Introduction
	2 Related Works
	3 Our Method: Chart2Code
	3.1 Problem Setting
	3.2 Dual Rewarding Mechanism
	3.3 Iterative Preference Learning

	4 Preference Construction
	4.1 Rule-based Variant Generation
	4.2 Aspect-level Feedback Collection
	4.3 Dataset Statistics

	5 Experiment
	5.1 Experimental Settings
	5.2 Main Results
	5.3 Ablation Study

	6 Case Study
	7 Conclusion
	References

