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Abstract

Large Language Models (LLMs) demonstrate remarkable in-context learn-
ing capabilities but often struggle with complex, multi-step reasoning.
Multi-Agent Debate (MAD) frameworks partially address these limitations
by enabling iterative agent interactions. However, they neglect valuable his-
torical insights by treating each new debate independently. In this paper, we
propose Memory-Augmented MAD (MeMAD), a parameter-free memory-
augmented MAD framework that systematically organizes and reuses past
debate transcripts. MeMAD stores structured representations of successful
and unsuccessful reasoning attempts enriched with self-reflections and peer
feedback. It systematically retrieves them via semantic similarity at infer-
ence time to inform new reasoning tasks. Our experiments on challenging
mathematical reasoning, scientific question answering, and language un-
derstanding benchmarks show that MeMAD achieves significant accuracy
gains (up to 3.3% over conventional MAD baselines) without parameter
updates. Our findings underscore structured memory as a pivotal mech-
anism for achieving deeper and more reliable multi-agent reasoning in
LLMs. Code is available in https://github.com/LSHCoding/MeMAD.

1 Introduction

LLMs have significantly advanced the field of natural language processing, exhibiting
remarkable in-context learning capabilities (Brown et al., 2020; OpenAI, 2024; Zhao et al.,
2024; Wei et al., 2022). However, despite these successes, LLMs often encounter difficulties
when dealing with complex reasoning tasks that necessitate multi-step reasoning. Many
approaches to enhance reasoning capabilities typically rely on parameter updates through
methods such as fine-tuning, but these methods demand extensive high-quality data, sub-
stantial computational resources and are susceptible to catastrophic forgetting. On the other
hand, the impressive in-context learning ability of LLMs has motivated a parameter-free
learning paradigm, enabling adaptation to diverse tasks through prompt engineering rather
than parameter modifications (Min et al., 2022; Dong et al., 2024).

Under this parameter-free paradigm, existing research primarily explores two streams:
Single-agent methods, employ specialized prompting techniques (Zhou et al., 2023; Besta et al.,
2024)—such as chain-of-thought reasoning (Wei et al., 2023), multi-path sampling (Wang
et al., 2023), and iterative self-refinement (Madaan et al., 2024; Shinn et al., 2023)—to
improve reasoning performance. Alternatively, Multi-agent methods simulate human-like
collaborative problem-solving by facilitating iterative interactions among multiple agents,
thereby enabling mutual correction and knowledge exchange (Chan et al., 2023; Hong
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et al., 2024; Chen et al., 2024b). Among these, Multi-agent Debate (MAD) is an effective
representative (Du et al., 2023; Li et al., 2024). Although MAD has demonstrated promise in
enhancing reasoning, current implementations typically treat each debate independently,
discarding valuable debate transcripts once an answer is finalized. This practice neglects
the rich reflections and iterative corrections embedded in historical interactions. It severely
limits the system’s capacity for continuous improvement, especially in real-world scenarios
where similar problems repeatedly arise under slightly varied contexts.

Recently, memory mechanisms have emerged as powerful tools for enhancing LLMs’ abil-
ities in long-term knowledge retention and dynamic adaptation (Modarressi et al., 2025;
Zhong et al., 2024; Packer et al., 2024; Wang et al., 2024a). It signals a viable way to further
improve multi-agent reasoning. For example, Xu et al. (2025) proposed an agentic memory
system that significantly improves long-term interaction capabilities and performance on
complex tasks such as multi-hop reasoning. Despite their effectiveness, existing memory-
augmented approaches predominantly emphasize general memory operations (e.g., reading,
writing, and retrieval) and overcome the limitations of context window size. However,
they often neglect transforming historical debate processes, especially valuable agent in-
teractions, into structured, reusable experiences. This oversight constitutes a critical gap
that hinders the systematic accumulation and reuse of valuable reasoning insights within
MAD frameworks. Consequently, it motivates targeted exploration of memory mechanisms
specifically tailored for multi-agent debates.
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Figure 1: Memory enhancement without parame-
ter update.

To bridge this critical gap, we propose
Memory-Augmented MAD (named
as MeMAD), a parameter-free frame-
work that organizes and reuses de-
bate experiences to guide future multi-
agent interactions as illustrated in Fig-
ure 1. MeMAD stores evidence of
successful and failed reasoning path-
ways—complete with self- and peer-
feedback—in a structured memory that
prioritizes both the context of each
problem and the insights gleaned from
the debate process. During inference,
it retrieves and injects relevant experi-
ences into agent prompts via semantic matching, ensuring that past lessons directly inform
current debates without requiring any parameter updates. This design allows for contin-
uous knowledge accumulation, enabling LLMs to learn from and build upon collective
historical experiences. We evaluate MeMAD on challenging tasks across diverse domains
and our experiments demonstrate that MeMAD significantly outperforms baselines without
requiring parameter updates.

In summary, our contributions are threefold: 1) We propose a parameter-free framework that
systematically stores and reuses past multi-agent debate experiences to enhance complex
reasoning. 2) Our approach enriches debate records with self-reflection and peer-generated
insights, capturing both successful and failed reasoning pathways for better usage. 3)
Experiments on diverse complex reasoning tasks show consistent and significant accuracy
improvements, demonstrating the value of reusing debate experiences.

2 Related Work

2.1 Multi-Agent Debate

The Multi-Agent Debate (MAD) framework leverages collaborative interactions among
agents to enhance reasoning, inspired by the “society of minds” concept. Building on the
foundational work of (Du et al., 2023), recent studies have explored two key directions to
improve MAD: differentiated agents and mechanism refinement. Differentiated-agent meth-
ods either assign distinct roles and expertise to agents (Chan et al., 2023; Liang et al., 2023;
Li et al., 2023) or employ diverse pre-trained models to broaden the scope of debates (Chen
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et al., 2024b; Wang et al., 2024c). Mechanism refinement focuses on optimizing debate flow
and reducing redundancy to improve efficiency (Liu et al., 2024; Li et al., 2024; Sun et al.,
2024). However, existing MAD frameworks generally treat each debate independently,
overlooking the structured accumulation and reuse of historical debate experiences. In con-
trast, our method transforms the debate process into reusable parameter-free experiences,
enabling cross-task improvements that traditional MAD frameworks have yet to achieve.

2.2 Memory Augmented LLMs

Recent works on memory augmentation for LLMs have explored various mechanisms to
enhance long-term knowledge retention and dynamic memory updating (Modarressi et al.,
2025; Zhong et al., 2024; Packer et al., 2024; Wang et al., 2024a). Some approaches employ ex-
plicit read-write memory architectures or parameter fine-tuning techniques to permanently
integrate new knowledge (Modarressi et al., 2025; Wang et al., 2024d; Zhong et al., 2024), but
these methods often incur high computational costs. Alternatively, non-parametric methods
leverage external knowledge retrieval (Qian et al., 2024) or compression-based storage
strategies (Wang et al., 2025; 2024a) to dynamically update and efficiently retrieve relevant
information. Additionally, cognitive-inspired frameworks introduce selective forgetting
and memory reinforcement mechanisms (Zhong et al., 2024) to further enhance long-term
interaction capabilities. Nonetheless, existing memory-augmentation methods predomi-
nantly focus on general memory operations (reading, writing, retrieval) and overcoming
the limitations of context window size, largely neglecting the structured transformation of
multi-agent debate interactions into reusable reasoning experiences. Our MeMAD frame-
work addresses this limitation by systematically structuring and reusing debate transcripts
enriched with reflective insights, thereby significantly enhancing multi-agent reasoning
without parameter updates.

3 Problem Setup

To systematically describe the process of MAD and establish a unified notation system for
subsequent methodological discussions, this section formalizes the core elements of the
MAD framework. Consider a set of N agents A = {A1, A2, . . . , AN} engaged in a debate
about a given question Q. The debate process consists of T iterative rounds. At each round
t ∈ {1, 2, . . . , T}, each agent Ai generates a response Oi,t based on the question Q and
the debate history up to the previous round, denoted as Hi,t−1 (where the initial state is
Hi,0 = ∅). The debate history is subsequently updated as Hi,t = {Hi,t−1, O1,t, . . . , ON,t},
which serves as the contextual information for the next round for agent Ai.

If a feedback mechanism is incorporated, agents provide both self-feedback and peer-feedback at
the end of each round. Specifically, after all agents produce their responses {O1,t, . . . , ON,t}
in round t, each agent Ai generates self-feedback SFi,t for its own response and peer-feedback
PFi,j,t for the response of agent Aj. These feedback signals are then appended to the debate
history, updating it to Hi,t = {Hi,t−1, O1,t, . . . , ON,t, SFi,t, {PFj,i,t}N

j=1} and enriching the
context for the next round of debate. After T rounds, all agents participate in a voting
process to determine the final answer, resulting in the debate outcome Rdebate.

4 The MeMAD Method

We propose Memory-Augmented Multi-Agent Debate (MeMAD) to overcome the challenge
of underutilized experiences in traditional MAD systems. As depicted in Figure 2, MeMAD
integrates two key components—experience accumulation and memory retrieval—within the
debate loop. In the experience accumulation phase, each debate is augmented with both
self- and peer-feedback, which are systematically stored in a structured memory to capture
reasoning trajectories and reflective insights. In the inference phase, the memory retrieval
mechanism leverages these structured records to guide ongoing debates, facilitating more
informed and efficient multi-agent reasoning. Section 4.1 delves into the dual-level feedback
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Figure 2: Overview of the MeMAD, consisting of two components: (1) Experience Accumula-
tion (top), featuring a Dual-level Feedback Mechanism with Self-Reflection and Peer-Reflection
Modules, followed by an Experience Storage Module that categorizes reasoning attempts as
positive or negative examples; and (2) Retrieval and Inference (bottom), where relevant past
experiences are retrieved from the Memory Bank to inform new debates.

and structured storage process, while Section 4.2 details how these accumulated experiences
are retrieved and applied to enhance performance across diverse reasoning tasks.

4.1 Experience Accumulation: Construction of Experience-driven Memory Bank

The experience accumulation phase is a pivotal component of the MeMAD framework. As
depicted in Figure 2, unlike traditional MAD frameworks, MeMAD introduces an innovative
dual-level feedback mechanism and a structured experience storage system during this
phase. The primary objective of this phase is to construct a memory bank comprising rich,
high-quality, and well-structured debate experiences, thereby laying a solid foundation for
subsequent experience retrieval and reasoning. To achieve this goal, MeMAD employs a
dual-level feedback mechanism, which enables the multi-agent system to generate high-
quality, reusable structured experiences from two complementary dimensions: self-reflection
(Self-Feedback) and mutual assistance (Peer-Feedback).

4.1.1 Dual-level Feedback Mechanism

To facilitate effective learning and experience accumulation during the debate process, the
MeMAD framework employs a dual-level feedback mechanism. This mechanism evaluates
and provides feedback on each agent’s debate performance at the end of every debate round
by leveraging the ground truth answer to the question as an external supervision signal.
Specifically, at the conclusion of each debate round t, the ground truth answer is used to
assess the correctness of each agent Ai’s response Oi,t, generating a binary supervision signal
Ci,t ∈ {True, False}. Building upon this binary supervision signal and the ground truth
answer, the MeMAD framework incorporates self-feedback and peer-feedback mechanisms,
which enable the generation of agent experiences from two complementary perspectives:
intrinsic self-reflection and external peer evaluation.

Self-Feedback. Each agent Ai engages in a self-feedback process upon receiving the
supervision signal Ci,t, which involves a thorough reflection on its reasoning mechanism.
The self-feedback, denoted as SFi,t, is a textual output generated by agent Ai based on its
historical context Hi,t−1 and the supervision signal, guided by a predefined self-feedback
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prompt template Ps f (see Appendix E.1 for details). The primary objective of this process
is to analyze and identify the underlying factors contributing to the successes or failures
observed during the current round of debate. This analysis facilitates the formation of
experiential knowledge that can be generalized to future scenarios. The formal definition of
SFi,t is given as:

SFi,t = Ai

(
Ps f (Q, Y, Oi,t, Ci,t),Hi,t−1

)
.

Here, Ps f (Q, Y, Oi,t, Ci,t) is the self-feedback prompt constructed based on the question Q,
the ground truth answer Y, the agent output Oi,t, and the correctness signal Ci,t.

Peer-Feedback. To effectively facilitate collaborative learning and knowledge sharing
among agents, the MeMAD framework incorporates a peer-feedback mechanism. When
agent Aj provides a correct answer in a debate while agent Ai answers incorrectly, Aj is
responsible for offering peer feedback to Ai. This feedback involves identifying deficiencies
in Ai’s response and providing actionable suggestions for improvement.

The peer feedback, denoted as PFj,i,t, is generated by the correct-answering agent Aj based
on its historical context Hj,t−1 and supervisory information. The generation process is
guided by a predefined peer-feedback prompt template Pp f (see Appendix E.1 for details),
which takes as input the question Q, the ground-truth answer Y, the output Oi,t of agent Ai,
and the output Oj,t of agent Aj. Formally, the peer feedback is defined as:

PFj,i,t = Aj

(
Pp f (Q, Y, Oi,t, Oj,t),Hj,t−1

)
.

4.1.2 Experience Storage Module

At the end of each debate round t, the key information generated by each agent Ai is
organized into an experience tuple Ei,t, which is subsequently stored in the agent’s dedicated
memory bank Mi,t. The memory bank is composed of a positive set M+

i,t and a negative
set M−

i,t. The specific storage location is determined by the agent’s response: successful
experiences are stored in M+

i,t, while failed experiences are stored in M−
i,t. The structure of

the experience tuple Ei,t is formally defined as:

Ei,t =< Q, Y, Oi,t, Re fi,t > .

Here, Re fi,t refers to the reflective experience, which integrates both self-feedback and
peer-feedback, aiming to provide effective guidance for future debates. Specifically, the
construction of Re fi,t is defined as:

Re fi,t =

{
SFi,t, if Ci,t = True,
SFi,t ∪ {PFj,i,t}N

j=1, if Ci,t = False.

The memory bank Mi,t serves as a dedicated storage space for each agent, systematically
accumulating all structured experiences generated during the experience accumulation
phase. As the number of debate rounds increases, Mi,t is continuously expanded, laying a
solid foundation for efficient experience retrieval and utilization during the testing phase.

4.2 Retrieval and Inference

After the experience accumulation phase, the memory bank is utilized during the multi-
agent debate process. As shown in Figure 2, a key innovation of MeMAD compared to
traditional MAD is its integration of structured memory. At the start of each debate round,
agents retrieve relevant historical experiences from their dedicated memory banks based on
the current question. These retrieved experiences are then injected into the prompt, enabling
agents to leverage past knowledge to enhance reasoning capabilities and debate efficiency.
The memory bank is implemented using Chroma, an open-source AI application database.
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During the testing phase, at the beginning of each debate round t, for a given test question
Qtest, each agent Ai retrieves relevant experiences from its memory bank Mi,t. The MeMAD
framework employs a semantic similarity-based retrieval mechanism to identify pertinent
experiences. The detailed steps are as follows:

1. The test question Qtest and the agent’s historical answer Oi,t−1 (empty in the initial
round) are semantically encoded into a query vector qi,t using a Sentence-BERT
encoder (Chen et al., 2024a):

qi,t = Encoder([Qtest; Oi,t−1]).

2. For each experience Ek
i,t = ⟨Qk, Yk, Ok

i,t, Re f k
i,t⟩ in the memory bank Mi,t = M+

i,t ∪
M−

i,t, its corresponding question Qk and answer Ok
i,t−1 are encoded into a vector

vk
i,t. The cosine similarity between qi,t and vk

i,t is then computed.

3. With similarity scores, the top-K experiences are selected from both the positive
memory set M+

i,t and the negative memory set M−
i,t, forming the retrieved set:

Eretrieved = {E1,+
i,t , ..., EK,+

i,t , E1,−
i,t , ..., EK,−

i,t }.

Once the relevant experiences Eretrieved are retrieved, they are injected into the agent’s
prompt to guide the debate process:

Oi,t = Ai
(

Ptask(Qtest, Eretrieved),Hi,t−1
)

.

By leveraging retrieved experiences, the MeMAD framework enables agents to avoid
repeating past mistakes and adopt more effective reasoning strategies. This significantly
improves both the efficiency and accuracy of the debate process during the testing phase.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our method across four datasets spanning mathematics, science, law,
and economics. Specifically, we use (1) MATH500 (a subset of the MATH benchmark with
advanced math problems) (Lightman et al., 2023), (2) GPQA (graduate-level multiple-choice
questions in biology, physics, and chemistry) (Rein et al., 2023), and (3) two specialized
subsets of MMLUPro (we denote as Law and Economics correspondingly) (Wang et al.,
2024e). Each dataset is split into training and test sets to ensure sufficient coverage and
diversity. Detailed descriptions and selection criteria are provided in the Appendix B.

Baselines. The baselines for comparison can be categorized into three main groups:

• Vanilla single-agent methods. We employed OpenAI’s GPT-4o-mini, ChatGPT, and the
open-source Qwen2.5-14b model (Yang et al., 2024). All tasks were performed using the
same task prompts as those adopted in the MeMAD benchmark.

• Advanced single-agent methods. Such methods go beyond a single pass of generation
by employing more nuanced mechanisms for feedback and exploration. (1) Self-Refine
iteratively improves its output by generating internal feedback and refining its own
responses (Madaan et al., 2024), while (2) Self-Consistency samples multiple reasoning
paths and aggregates the final answers to mitigate the impact of any single flawed chain
of thought (Wang et al., 2023). (3) Reflexion complements these approaches by reinforcing
decision-making through linguistic feedback, enabling agents to reflect on and learn from
their own outputs (Shinn et al., 2023).

• Multi-agent methods. We utilized two multi-agent-based methods as baselines: Multi-
Agent Debate (MAD) (Du et al., 2023) and Mixture-of-Agents (MoA) (Wang et al., 2024b).
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Implementation Details. Considering the inherent cost associated with API-based models
and in line with established practices in prior research, we adopted a dataset sampling
strategy in this study Chen et al. (2024b). For the Law and Economics datasets, we randomly
sampled a portion of the data as the test set. For MATH500, we selected the most challenging
problems as the test set (with a level of 5). For GPQA, we used the GPQA Diamond subset
as the test set. All agents were built using the GPT-4o-mini model provided by OpenAI.

5.2 Main Results

Category Method MATH500 GPQA Law Economics Average

Vanilla
single-agent

GPT-4o mini 0.485 0.379 0.395 0.683 0.486
ChatGPT 0.179 0.281 0.342 0.550 0.338
Qwen2.5-14B 0.500 0.429 0.370 0.673 0.493

Advanced
single-agent

Self-Refine 0.537 (+0.052) 0.438 (+0.059) 0.383 (-0.012) 0.692 (+0.009) 0.513 (+0.027)
Self-Consistency 0.560 (+0.075) 0.402 (+0.023) 0.411 (+0.016) 0.673 (-0.010) 0.512 (+0.026)
Reflexion 0.560 (+0.075) 0.414 (+0.035) 0.412 (+0.017) 0.713 (+0.030) 0.525 (+0.039)

Multi-agent
MAD 0.552 (+0.067) 0.409 (+0.030) 0.425 (+0.030) 0.701 (+0.018) 0.522 (+0.036)
MoA 0.537 (+0.052) 0.419 (+0.040) 0.435 (+0.040) 0.763 (+0.080) 0.539 (+0.053)
MeMAD (ours) 0.590 (+0.105) 0.460 (+0.081) 0.457 (+0.062) 0.782 (+0.099) 0.572 (+0.086)

Improvement ↑ 0.030 ↑ 0.022 ↑ 0.022 ↑ 0.019 ↑ 0.033

Table 1: Performance comparison of different methods across datasets. Green text indicates
improvements over GPT-4o-mini, gray text signifies declines compared to GPT-4o-mini,
and red text highlights MeMAD’s advancements over other top-performing methods.

MeMAD consistently outperforms all baseline methods. Table 1 presents comprehensive
experimental results across multiple reasoning tasks. Overall, MeMAD achieves SOTA
performance, surpassing the strongest baseline, MoA, by 3.3% and improving upon the
MAD framework by 5%. These results highlight the effectiveness of structured memory
augmentation in multi-agent debates. Specifically, MeMAD achieves performance gains
of 3.0%, 2.2%, 2.2%, and 1.9% on the MATH500, GPQA, Law, and Economics datasets,
respectively. This consistent improvement across domains demonstrates the generalizability.

Advanced single-agent methods show incremental but limited improvements. Within
the Advanced single-agent category, Reflexion achieves the best overall performance, out-
performing Self-Refine and Self-Consistency on three out of four datasets. Reflexion’s
advantage lies in its memory mechanism, which enables iterative reasoning and feedback
reuse, allowing it to capture and utilize historical insights. In contrast, Self-Refine relies
on iterative refinement strategies but lacks the memory-driven enhancements of Reflexion,
limiting its effectiveness. Self-Consistency, which employs multi-path sampling akin to a
simplified multi-agent debate, demonstrates modest gains but fails to fully leverage collabo-
rative reasoning. These results suggest that while advanced single-agent methods improve
upon vanilla approaches, their lack of structured memory integration constrains their ability
to tackle complex reasoning tasks.

Multi-agent methods demonstrate superior performance. The Multi-agent methods con-
sistently outperform single-agent approaches, with MeMAD achieving the highest accuracy
across all evaluation tasks. The significant improvements over MAD validate our core
hypothesis that structured experience reuse enhances multi-agent reasoning. Importantly,
our parameter-free framework for experience accumulation and retrieval can be readily
integrated with other multi-agent architectures, offering a promising direction for future
research in collaborative reasoning systems.

5.3 Detailed Analysis and Ablations of MeMAD

Comprehensive Memory Components Enhance Reasoning Performance. To systemati-
cally evaluate the impact of different memory components on MeMAD’s performance, we
conducted an ablation study on the Economics dataset. Starting from a minimal memory
configuration containing only questions and solutions (Q + Y), we incrementally incorpo-
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rated additional components: agent responses (O), self-reflection (SR), and peer-reflection
(PR). The results, as shown in Table 2, clearly demonstrate the cumulative benefits of these
components.

Memory Acc

∅ 0.701
Q + Y 0.754 (+0.053)
Q + Y + O + SR 0.768 (+0.067)
Q + Y + O + (SR ∪ PR) 0.777 (+0.076)

Table 2: The impact of different experience
compositions on performance: question (Q),
solution (Y), agent response (O), self-reflection
(SR), and peer-reflection (PR).

The baseline configuration (Q + Y) achieved
an accuracy of 75.4%, providing a founda-
tional understanding of the problem and its
solution. Adding agent responses and self-
reflection (Q + Y + O + SR) led to a 1.4% im-
provement, reaching 76.8%. This highlights
the value of incorporating iterative reason-
ing and self-assessment into the memory
structure. The full configuration, which in-
tegrates both self- and peer-reflections (Q +
Y + O + (SR ∪ PR)), achieved a further im-
provement, reaching 77.7%. These results
validate that optimal performance requires
both complete contextual information and multi-perspective feedback, aligning with our
framework design in Section 4.

Embedding-based retrieval surpasses token-overlap-based retrieval. To evaluate the
effectiveness of different retrieval methods within MeMAD (Li & Li, 2024; Lee et al., 2024),
we conducted a comparative analysis of token-overlap-based and embedding-based ap-
proaches, as summarized in Table 3. Overall, embedding-based approaches outperform the
traditional token-overlap-based BM25 method, underscoring the importance of semantic
understanding in retrieving debate experiences.

Among the embedding-based methods, nomic-embed-text achieved the best performance
on the Economics (0.782) and Law (0.457) datasets, showcasing its strong ability to handle
domain-specific tasks that require nuanced semantic understanding. On the other hand, bge-
m3 excelled on the MATH500 (0.590) and GPQA (0.460) datasets, indicating its robustness in
mathematical reasoning and scientific question answering tasks. Notably, bge-m3 emerged
as the best-performing method overall, with an average accuracy of 0.567, outperforming
nomic-embed-text (0.553) and mxbai-embed-large (0.548). Additionally, BM25 performs
comparably to bge-m3 on MATH500 (0.590), suggesting that the mathematical reasoning
dataset may rely more on lexical matching than on deep semantic representations.

Category Method MATH500 Economics GPQA Law Average

Token-overlap BM25 0.590 0.739 0.419 0.424 0.543

Embedding
bge-m3 0.590 (+0.00) 0.777 (+0.038) 0.460 (+0.041) 0.440 (+0.016) 0.567 (+0.024)
nomic-embed-text 0.560 (-0.03) 0.782 (+0.043) 0.414 (-0.005) 0.457 (+0.033) 0.553 (+0.010)
mxbai-embed-large 0.582 (-0.008) 0.744 (+0.005) 0.455 (+0.036) 0.409 (-0.015) 0.548 (+0.005)

Table 3: Impact of different embedding methods. Green text indicates improvements over
BM25 and gray text signifies declines compared to BM25.

MeMAD outperforms other experience selection strategies. To systematically evaluate the
impact of different experience selection strategies and memory configurations on MeMAD’s
performance, we conducted comprehensive ablation studies on the Economics dataset.
We compared three experience selection strategies: (1) Random, which selects N cases
randomly from the memory bank; (2) Similarity, which retrieves the top-N cases with the
highest semantic similarity to the current problem; and (3) Diversity, which first clusters
the experiences using K-Means and then selects one semantically similar case per cluster
to ensure diversity. To ensure fairness, all experiments were constrained to select the
same number of experiences. Additionally, we examined the contributions of successful
(M+) and failed (M−) debate experiences, as well as their combination (M+ ∪M−), to
assess the role of memory bank composition. Table 4 summarizes the results, which clearly
demonstrate that memory augmentation consistently enhances reasoning accuracy across
all methods, validating the importance of leveraging historical debate experiences.
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Selection Strategy M+ M− M+ ∪M−

Random 0.730 (+0.029) 0.720 (+0.019) 0.739 (+0.038)
Similarity 0.735 (+0.034) 0.739 (+0.038) 0.754 (+0.053)
Diversity 0.739 (+0.038) 0.754 (+0.053) 0.768 (+0.067)
Positive and Negative - - 0.777 (+0.076)

Table 4: Performance of different experience selection strate-
gies on Economics. We use bge-m3 as it performed the best
across datasets on average.

The results in Table 4 high-
light several key findings.
First, memory augmentation
consistently improves perfor-
mance over the MAD across
all selection strategies, affirm-
ing the utility of historical de-
bate experiences (Green col-
ored numbers indicate the
improvements over MAD).
However, the choice of experience selection strategy significantly influences effectiveness.
Random yields only marginal gains (2.9%), while Similarity retrieval achieves substantial
accuracy improvements (4.2%). Specifically, Similarity retrieval outperforms Random by
1.3% on average, demonstrating the importance of selecting contextually relevant experi-
ences. Second, we observe that Diversity, which balances semantic similarity with diversity,
achieves better performance. Finally, our analysis reveals that our proposed Positive and
Negative strategy, adding in both successful and failed debate experiences, yields the highest
performance (0.777). Notably, methods over the negative set M− sometimes perform com-
parably to or even outperform methods over the positive set M+, suggesting that learning
from failed reasoning attempts provides unique insights. Methods over the combined
(M+ ∪M−) leverage the complementary strengths of both sets, achieving optimal results.
These findings validate MeMAD’s core design principle of learning from both successes
and failures, underscoring the importance of a comprehensive and structured memory.

5.4 Transferability and Generality

Method Acc

MAD 0.725
MeMAD 0.765

Table 5: Evaluation of experience
transfer performance.

MeMAD demonstrates cross-task knowledge trans-
ferability. To evaluate the cross-task experience
transferability of the MeMAD framework, we con-
ducted an experience transfer experiment, as sum-
marized in Table 5. In this experiment, we utilized
experiences accumulated from the MATH500 task to
improve performance on the MMLUPro-Math task,
which differs significantly in task format. To mini-
mize the impact of format-specific features, the expe-
rience repository was curated to retain only task-format-independent content, specifically
self-reflective and peer-reflective feedback. As shown in Table 5, MeMAD achieves a sub-
stantial accuracy improvement of 4.0% on the MMLUPro-Math task (from 0.725 to 0.765)
compared to the MAD baseline. This result strongly validates the cross-task generalization
capabilities of the MeMAD framework, even when these tasks differ significantly in struc-
ture. Furthermore, this experiment indirectly corroborates the effectiveness of the dual-level
feedback mechanism, which enriches the memory bank with transferable insights.

MeMAD demonstrates generality across stronger LLMs. To evaluate the generality of the
MeMAD framework, we designed a generality experiment, with the results summarized in
the table 6. Specifically, we conducted experiments on the GPQA and Economics datasets,
leveraging the experience accumulated by GPT-4o-mini to enhance strongger models, GPT-
4o and Deepseek-V3. Compared to MAD, MeMAD exhibited performance improvements
across all models on both datasets, highlighting the generality of our approach to more
advanced models. Additionally, we observed that even experience derived from weaker
models can be effectively transferred to enhance the performance of stronger models.

6 Conclusion

In this paper, we introduced Memory-Augmented Multi-Agent Debate (MeMAD), a novel
parameter-free framework that systematically captures and reuses debate experiences to
enhance complex reasoning. By integrating a structured memory system with dual-level
feedback—comprising both self-feedback and peer-feedback—MeMAD effectively pre-
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Method GPQA Economics

GPT-4o DeepSeek-V3 GPT-4o DeepSeek-V3

Single Agent 0.490 0.523 0.798 0.768
MAD 0.540 (+0.050) 0.535 (+0.012) 0.796 (-0.002) 0.787 (+0.019)
MeMAD 0.556 (+0.066) 0.540 (+0.017) 0.815 (+0.017) 0.815 (+0.047)

Table 6: Generality evaluation of MeMAD across stronger models on GPQA and Economics
datasets. Green text shows improvements over Single Agent, while gray indicates declines.

serves the rich iterative reasoning process that traditional MAD frameworks tend to discard.
Our experiments on challenging tasks such as mathematical reasoning, scientific question
answering, and language understanding demonstrate that MeMAD yields significant im-
provements in accuracy and robustness. In the future, we will investigate dynamic memory
update strategies and explore the incorporation of external knowledge sources to further
boost the system’s reasoning capabilities.

Limitations

While MeMAD effectively reuses historical debate experiences to improve multi-step rea-
soning, it introduces additional overhead for maintaining, retrieving, and updating the
structured memory. In particular, ensuring data quality in both positive and negative
examples—along with their associated feedback—can be labor-intensive. Moreover, our
approach assumes that tasks share enough similarity to benefit from prior debates, which
may limit its impact on highly diverse or out-of-distribution tasks. Future work could
explore more automated feedback generation, dynamic memory pruning, and adaptive
retrieval techniques to further enhance MeMAD’s scalability and generalization.
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A Experimental Details

In this section, we provide a detailed explanation of the implementation of MeMAD. The
model is configured with a temperature parameter of 0.7, while other hyperparameters are
set to their default values. Specifically, we employed the following model configurations:
GPT-3.5-turbo-0125 (referred to as ChatGPT), GPT-4o-mini-2024-07-18 (referred to as GPT-
4o-mini), and GPT-4o-2024-08-06 (referred to as GPT-4o) via the OpenAI API 1, Deepseek-V3
via the Deepseek API 2, as well as Qwen-2.5-14B-instruct-fp16 (referred to as Qwen2.5 14B)
via the Alibaba Cloud API 3. All MeMAD experiments were conducted with a configuration
of three agents, with the maximum number of debate rounds set to 3. During the experience
accumulation phase, all agents underwent the maximum number of debate rounds. In the
retrieval and inference phase, the process terminated when all agents reached a consensus
or the maximum debate rounds were reached. For the configurations of MAD and MoA
experiments, we strictly adhered to the settings described in the original papers.

B Datasets

We conducted experiments on datasets covering a wide range of domains, including complex
reasoning problems in mathematics, physics, chemistry, biology, law, and economics.

1https://openai.com/
2https://www.deepseek.com/
3https://www.aliyun.com/
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• MATH500: This dataset is a subset of the MATH benchmark, consisting of 500 math-
ematical problem-solving questions categorized by topic and difficulty (Lightman
et al., 2023). In our study, the training set was constructed by randomly sampling
100 problems per category from the MATH training set, restricted to problems
with a difficulty level of at least 3. For evaluation, to ensure the challenge of the
experiments, we selected 134 problems with the highest difficulty level (level 5)
from the MATH500 dataset as the evaluation set.

• GPQA: A dataset comprising 448 graduate-level multiple-choice questions span-
ning biology, physics, and chemistry. All questions were validated by domain
experts to ensure both objectivity and difficulty (Rein et al., 2023). For our experi-
ments, we used the GPQA Diamond subset (198 questions) as the test set, while the
remaining questions from the GPQA Main set (excluding GPQA Diamond) were
used as the training set.

• MMLUPro-Law: MMLUPro is a comprehensive benchmark designed for multi-
discipline language understanding and reasoning, spanning 14 domains (Wang
et al., 2024e). For this study, we utilized the Law subset, which contains 1,101
high-quality multiple-choice questions. The dataset was randomly divided into
training and testing sets in a 3:1 ratio, resulting in 826 questions for experience
accumulation and 276 for evaluation.

• MMLUPro-Economics: Similarly, we also employed the Economics subset of
MMLUPro (Wang et al., 2024e), which comprises 844 multiple-choice questions.
Following the same 3:1 split strategy, we obtained 633 questions for training and
211 for testing.

C Baseline Details

Here we list more details about baseline models:

• Self-Refine. It generates an initial output with an LLM, then the LLM gives feedback
and refines the output iteratively. It doesn’t need extra training data or RL, and
performs well across diverse tasks, serving as a benchmark for comparison (Madaan
et al., 2024).

• Self-Consistency: It samples diverse reasoning paths from a language model’s
decoder, then aggregates final answers by marginalizing out the reasoning paths.
This unsupervised method improves language models’ reasoning performance on
various tasks (Wang et al., 2023).

• Reflexion: It reinforces language agents via linguistic feedback. Agents reflect on
task feedback, store reflective text in memory, and use it for better decision-making.
It shows good performance in diverse tasks like decision-making, coding, and
language reasoning (Shinn et al., 2023).

• MAD: This approach generates answers through multi-round debates among multi-
ple language model instances, which can improve reasoning and performs well in
various tasks, providing a reference for comparative experiments (Du et al., 2023).

• MoA: It employs a layered architecture, with each layer comprising multiple LLM
agents. Agents use outputs from the previous layer as supplementary input, en-
abling effective information flow. MoA has demonstrated notable performance
across a diverse range of tasks (Wang et al., 2024b).

D Additional Experiments

D.1 The impact of memory on different models

Memory boosts reasoning for single and multi-agent models. To systematically evaluate
the effectiveness of memory augmentation, we conducted comparative experiments on both
single-agent and multi-agent baselines, with and without memory augmentation. For a fair
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comparison, we implemented a memory-augmented single-agent framework that mirrors
our approach in memory retrieval mechanism—incorporating both successful and failed
experiences from the training set through semantic similarity matching.

Figure 3 presents the comparative results across different model configurations. The experi-
mental outcomes demonstrate that memory augmentation consistently enhances reasoning
performance across all agent architectures while maintaining parameter-free operation.
Notably, more advanced models like GPT-4o-mini and Qwen2.5 exhibit more substantial
improvements compared to ChatGPT, suggesting that stronger models possess superior ca-
pabilities in leveraging structured experiences. Furthermore, the performance gap between
MeMAD and MAD significantly exceeds that between Me+MoA and MoA, indicating that
while these accumulated experiences can enhance MoA’s performance, their effectiveness is
particularly pronounced in debate-based frameworks where interaction plays a crucial role.

Figure 3: Performance of different methods with and without memory augmentation.

D.2 Token Usage Analysis

MeMAD enhances reasoning ability without increasing computational overhead. This
experiment investigates the average token consumption per question for MAD and MeMAD
across various datasets, analyzing both prompt and completion token usage. As illustrated
in Table 7, MeMAD integrates structured memory into prompts, yet its overall token
consumption remains comparable to or even lower than that of MAD. Notably, MeMAD
consistently reduces completion token usage. This efficiency is achieved because MeMAD
terminates the debate process as soon as all agents reach a consensus, avoiding unnecessary
token generation in prolonged interactions.

Method
#Prompt Tokens #Completion Tokens

MAD MeMAD MAD MeMAD

GPQA 17.81K 16.56K 3.61K 2.49K
MATH500 20.96K 25.39K 5.76K 4.11K

Law 12.48K 19.66K 1.65K 1.64K
Economics 10.06K 7.67K 1.68K 0.87K

Table 7: Comparison of token consumption between MAD and MeMAD.

E Prompts in MeMAD

E.1 Prompts in Dual-level Feedback Mechanism

The prompts for the self-feedback module and the peer-feedback module are shown in
Table 8 and Table 9, respectively.

E.2 Prompts for different Tasks

The prompts for different tasks are shown in Table 10.
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Self-Feedback Prompt Template

You are tasked with analyzing a problem-solving example and generating transferable
insights for future improvement on solving similar problems.

Given Information:

<question> {{question}} </question>

<correct solution> {{correct solution}} </correct solution>

<llm response> {{llm response}} </llm response>

<response correctness>

Response Correctness is correct [or incorrect].

</response correctness>

Analysis Framework:

1. Compare the solutions: 1) Identify similarities and differences in approach; 2) Analyze
which elements worked better and why; 3) Note any efficiency or clarity advantages

2. If correct: 1) Identify successful reasoning patterns; 2) Extract key decision points that led
to success

3. If incorrect: 1) Identify the gap between response and correct answer; 2) Analyze where
the reasoning went wrong. 3) Determine what knowledge or step was missing

Output Requirements:

Generate exactly 3 key learned insights in this format:

”Key Learning #[number]: [specific insight]

Application: [how to apply this learning to future problems]”

Each learned insight must be: 1) Generalizable (applicable to similar problems) 2) Specific
(clear action or thinking strategy) 3) Concise (one sentence for insight, one for application)
4) Focus on problem-solving strategies only

Note:

1) Do not restate the specific problem content or solution; 2) Only output the learned insights.

Table 8: Prompt template for self-feedback.
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Peer-Feedback Prompt Template

You are tasked with analyzing an incorrect LLM response by comparing it with
both the standard solution and a correct LLM response, to generate generalizable
insights that can help LLMs better solve similar problems in the future.

Given Information:

<question> {{question}} </question>

<correct solution> {{correct solution}} </correct solution>

<correct llm response> {{correct llm response}} </correct llm response>

<incorrect llm response> {{incorrect llm response}}</incorrect llm response>

Analysis Framework:

1. Error Pattern Analysis: 1) Identify where incorrect response deviates from
both correct approaches; 2) Analyze the root causes of these deviations; 3) Detect
patterns of misconceptions or flawed reasoning.

2. Success Pattern Recognition: 1) Study how correct LLM response aligns with
standard solution; 2) Identify key elements missing in incorrect response; 3) Extract
successful reasoning patterns and approaches.

3. Improvement Opportunities: 1) Pinpoint specific areas where incorrect response
could be enhanced; 2) Identify critical checkpoints that could prevent similar errors;
3) Formulate strategies to bridge the gap between incorrect and correct approaches.

Output Requirements:

Generate exactly 3 transferable insights in this format: ”Learning Point [number]:
[specific insight]; Strategic Application: [concrete strategy for future problem-
solving]”

Each insight must be: 1) Focused on preventing similar errors in future; 2) Strategy-
focused (not problem-specific); 3) Action-oriented; 4) Clearly articulated in 1-2
sentences.

Note:

1) Emphasize practical strategies for enhancement; 2) Ensure insights are applicable
to future problem-solving; 3) Avoid repeating specific problem details or solutions;
4) Emphasize methodological improvements rather than content knowledge; 5)
Only output the learned insights.

Table 9: Prompt template for peer-feedback.
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Prompts for different Tasks

MATH500:

Can you solve the following math question as accurately as possible?

<question>{{question}}</question>

Present your analysis concisely using only essential reasoning steps. Provide the
final answer in double parentheses at the end of your response : ((answer))

GPQA:

Please analyze the following question and solve it as accurately as possible.

<question>{{question}}</question>

Present your analysis concisely using only essential reasoning steps. Provide the
final answer in double parentheses at the end of your response: ((answer)), where
answer is A, B, C, or D.

MMLUPro-Law:

Please analyze the following legal question:

<question>{{question}}</question>

Present your analysis concisely using only essential reasoning steps and select
the correct answer. Provide your final answer in double parentheses: ((answer)),
where answer can be A, B, C, D, E, F, G, H, I, or J.

MMLUPro-Economics:

Please analyze the following economics question:

<question>{{question}}</question>

Present your analysis concisely using only essential reasoning steps and select
the correct answer. Provide your final answer in double parentheses: ((answer)),
where answer can be A, B, C, D, E, F, G, H, I, or J.

Table 10: Prompt template for different task.

18


	Introduction
	Related Work
	Multi-Agent Debate
	Memory Augmented LLMs

	Problem Setup
	The MeMAD Method
	Experience Accumulation: Construction of Experience-driven Memory Bank
	Dual-level Feedback Mechanism
	Experience Storage Module

	Retrieval and Inference

	Experiments
	Experimental Setup
	Main Results
	Detailed Analysis and Ablations of MeMAD
	Transferability and Generality

	Conclusion
	Experimental Details
	Datasets
	Baseline Details
	Additional Experiments
	The impact of memory on different models
	Token Usage Analysis

	Prompts in MeMAD
	Prompts in Dual-level Feedback Mechanism
	Prompts for different Tasks


