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Abstract

Generalized category discovery faces a key
issue: the lack of supervision for new and
unseen data categories. Traditional methods
typically combine supervised pretraining with
self-supervised learning to create models, and
then employ clustering for category identifica-
tion. However, these approaches tend to be-
come overly tailored to known categories, fail-
ing to fully resolve the core issue. Hence, we
propose to integrate the feedback from LLMs
into an active learning paradigm. Specifically,
our method innovatively employs uncertainty
propagation to select data samples from high-
uncertainty regions, which are then labeled us-
ing LLMs through a comparison-based prompt-
ing scheme. This not only eases the labeling
task but also enhances accuracy in identify-
ing new categories. Additionally, a soft feed-
back propagation mechanism is introduced to
minimize the spread of inaccurate feedback.
Experiments on various datasets demonstrate
our framework’s efficacy and generalizability,
significantly improving baseline models at a
nominal average cost. 1

1 Introduction

Generalized Category Discovery (GCD) is a cru-
cial task in open-world computing (Lin et al., 2020;
Zhang et al., 2021b), where the goal is to auto-
mate the classification of partially labeled data. It
uniquely challenges systems to not only recognize
predefined categories but also to discover entirely
new categories from a mix of labeled and unlabeled
data (Yang et al., 2021; Zeng et al., 2022). This
task mirrors the dynamic and evolving nature of
real-world data, where new categories frequently
emerge, necessitating models that can adapt and
learn continually.

1https://github.com/liangjinggui/ALUP
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Figure 1: The active learning loop with propagated
LLM feedback for model training.

In traditional GCD methods, the initial step of-
ten involves supervised pretraining on a labeled
dataset to establish a foundational understanding
of known categories (Zhong et al., 2021; Vaze et al.,
2022). This is followed by self-supervised learn-
ing on unlabeled data or even contrastive learning,
allowing the model to extract and learn patterns
without explicit category labels (An et al., 2023).
The final stage typically employs clustering tech-
niques, like K-Means (MacQueen et al., 1967), to
group similar data points, aiming to identify cate-
gories. However, this sequential process tends to
imprint a bias towards the initially learned, known
categories, thus limiting the model’s ability to gen-
eralize to new, unseen categories (Mou et al., 2022).
Such overfitting to familiar data restricts the scope
of GCD, preventing it from fully embracing the
open-world setting it is intended for.

Recently, Large Language Models (LLMs) such
as GPT-4 (OpenAI, 2023), PaLM (Chowdhery
et al., 2023), and LLaMA (Touvron et al., 2023)
have shown extraordinary versatility across a broad
range of NLP tasks, providing good quality super-
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vision signals for summarization (Liu et al., 2023),
clustering (Zhang et al., 2023c), etc. Their ability
to understand and generate nuanced language pat-
terns makes them promising for supplementing the
supervision of new categories in GCD. However,
the direct application of LLMs in GCD, which typ-
ically involves processing and clustering thousands
of samples, raises substantial challenges. The in-
tensive computational demands of LLMs could
lead to issues with data privacy, high latency, and
increased costs, which are particularly problematic
in large-scale GCD scenarios.

To circumvent the above challenges, integrating
LLMs into an active learning framework presents
a practical and efficient solution. This approach en-
tails selectively using LLMs to provide supervision
signals, especially in cases where the data is most
uncertain or the categories are novel. However,
this integration brings forth new challenges: opti-
mizing the use of LLMs to ensure cost and time
efficiency, and critically, ensuring the reliability of
the feedback provided by LLMs. Effective strate-
gies are needed to mitigate the risk of propagating
incorrect feedback from LLMs.

Addressing these challenges, we propose a novel
framework for GCD to Actively Learn from LLMs
with Uncertainty Propagation, termed as ALUP.
As shown in Figure 1, we begin by employing
an uncertainty propagation strategy, which sys-
tematically identifies data samples in regions of
high uncertainty – these are the areas where the
model is least confident and, therefore, where
LLM input could be most beneficial. The selected
samples are then labeled using LLMs through a
sophisticated comparison-based prompting tech-
nique. This method leverages the comparative
strength of LLMs, making it easier for them to
provide accurate feedback, especially for new and
complex categories. To further enhance our ap-
proach, we incorporate a soft label propagation
mechanism. This mechanism carefully extends the
LLMs-generated feedback to similar, neighboring
samples, effectively amplifying the value of each
LLM query while minimizing the risk of propa-
gating errors. Rigorous testing on diverse datasets
has shown that our method not only significantly
improves upon existing baseline models but also
does so with a nominal increase in cost, offering
a scalable, efficient, and effective solution for the

intricate problem of GCD.
The main contributions of this work can be sum-

marized as follows:

• We developed an innovative active learning
framework integrating LLMs’ feedback for
GCD, addressing the challenge of limited su-
pervision for new data categories.

• We combined uncertainty-region based
data selection and comparison-based LLMs
prompting, significantly enhancing GCD
accuracy and efficiency with soft propagation.

• Experiments demonstrated marked improve-
ments over traditional GCD methods across
diverse datasets, affirming the ALUP’s effec-
tiveness and resource efficiency.

2 Related Work

2.1 Generalized Category Discovery
Unsupervised Methods: The realm of GCD has
been fundamentally shaped by unsupervised meth-
ods, focusing on learning cluster-friendly repre-
sentations. These early methods (Xie et al., 2016;
Yang et al., 2017; Padmasundari and Bangalore,
2018; Caron et al., 2018; Hadifar et al., 2019) laid
the groundwork by using unsupervised clustering
algorithms to group samples based on inherent sim-
ilarities. Recent advancements, particularly with
the emergence of LLMs, have brought a paradigm
shift. The integration of LLMs in unsupervised
GCD (De Raedt et al., 2023; Zhang et al., 2023c;
Viswanathan et al., 2023) represents a novel direc-
tion, pushing the boundaries of category identifica-
tion beyond traditional clustering techniques.

Semi-Supervised Methods: In contrast, semi-
supervised GCD methods blend limited labeled
data with possibly larger unlabeled data to enhance
category discovery (Hsu et al., 2018, 2019; Han
et al., 2019). Methods like CDAC+ (Lin et al.,
2020) utilize labeled data to guide clustering, creat-
ing a synergy between supervised knowledge and
unsupervised discovery. The two-stage scheme,
involving base model pretraining and iterative op-
timization (Zhang et al., 2021a,b; Wu et al., 2022;
Wei et al., 2022; Zhang et al., 2023a; Zhou et al.,
2023; Mou et al., 2023), has gained popularity. It
benefits from pseudo label signals generated by the
pretrained model, although it often struggles with
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the quality of pseudo labels and sample represen-
tations. Efforts to refine learning objectives, such
as contrastive learning (Mou et al., 2022; Zhang
et al., 2022a), aim to directly learn discriminative
representations for new categories. Yet, the chal-
lenge remains in effectively decoupling pseudo
label generation from representation learning (Wu
et al., 2024), a gap our work addresses by introduc-
ing LLMs into the GCD.

2.2 Active Learning in the Era of LLMs

Traditional Active Learning (AL): AL has tra-
ditionally been a solution to the data scarcity prob-
lem in NLP (Ren et al., 2022; Zhang et al., 2022b),
focusing on identifying and annotating informative
samples. Various acquisition strategies have been
employed, including uncertainty-based (Wang and
Shang, 2014; Schröder et al., 2022; Yu et al., 2023),
diversity-based (Sener and Savarese, 2018; Gissin
and Shalev-Shwartz, 2019; Citovsky et al., 2021),
and hybrid methods (Liu et al., 2018; Zhan et al.,
2022). While effective, these methods still rely on
expensive human expertise for annotation.

LLMs as a Game-Changer in AL: With the
advent of LLMs, a new frontier in AL has been
explored. LLMs are now being considered as
cost-effective alternatives to human experts (Zhang
et al., 2023c; Cheng et al., 2023; Zhang et al.,
2023b; Margatina et al., 2023; Liao et al., 2023).
For instance, Xiao et al. (2023) demonstrated the
use of LLMs as active annotators, harnessing their
ability to distill task-specific knowledge interac-
tively. In our work, we further this exploration
by applying AL with LLMs to GCD. Our unique
contribution not only lies in the implementation of
an uncertainty-driven propagation strategy to maxi-
mize the utility of LLMs in a cost-effective manner,
but also in the design of a soft feedback propaga-
tion scheme to minimize the spread of inaccurate
feedback.

3 Methodology

3.1 Problem Formulation

We study the GCD problem defined as follows: As-
suming we have a known category set Ck and an
unknown category set Cu, where {Ck ∩ Cu} = ∅
and |Ck|+ |Cu| = K. Here K is the total number
of categories. Under the semi-supervised GCD set-

ting, given a labeled data set Dl = {(xi, yi)|yi ∈
Ck}Li=1, and an unlabeled data set Du = {xj}Uj=1

where the category of each xj belongs to {Ck∪Cu},
the task is to learn a representation extractor M
to identify all unknown categories from Du and
perform accurate clustering to classify each xi in
{Dl ∪ Du} into its corresponding category.

3.2 Approach Overview
General GCD methods typically first extract rep-
resentations Z = {zi}|Dl∪Du|

i=1 via model M for
each sample xi and then perform K-Means to lo-
cate cluster centers {µi}Ki=1 for doing GCD. Our
proposed ALUP builds upon existing GCD models
and effectively incorporates LLMs’ feedback in an
active learning scheme.

Figure 2 depicts an overview of our ALUP
framework for GCD. It encompasses three key de-
signs: Uncertainty Propagation for sample selec-
tion, Comparison-based Prompting for soliciting
LLMs’ feedback, and Soft Feedback Propagation
for wisely spreading the feedback. In what follows,
we will detail these designs separately.

3.3 Uncertainty Propagation (UP)
Within the ALUP framework, we design the uncer-
tainty propagation to select the most informative
unlabeled samples that are representative of high-
uncertainty regions. Note that given a general GCD
model M, we can extract representations zi for
each xi in the dataset and perform K-means to
locate cluster centers {µk}Kk=1. To estimate the
model predictive uncertainty, following Xie et al.
(2016), we use the Student’s t-distribution to com-
pute the probability of assigning the sample xi to
each cluster k:

qik =
(1 + ∥zi − µk∥2/α)−

α+1
2∑

k′(1 + ∥zi − µk′∥2/α)−
α+1
2

, (1)

where α represents the degrees of freedom in the
Student’s t-distribution. After obtaining the model
predictive probabilities, we use the entropy (Lewis
and Gale, 1994) to measure the uncertainty for
each sample xi:

u(xi) = −
K∑
k=1

qiklogqik. (2)

Here, a higher u(xi) can indicate a higher likeli-
hood of the model M incorrectly assigning xi to a

3



Soft Feedback PropagationUncertainty Propagation

(z1,u(xi)), (z1,u(x2))...Text corpus

x1,x2,...,xn M

propagation

Comparison-based Prompting

The one most like     is    .   

Refinement Newly labeled samples

FeedbackCluster[   ]: Sample[   ],Cluster
[   ]: Sample[    ].  Which one is 
most like[    ]?         x1

q

x1
q

Add (   ,   )     {xi , yi    }i=1
q KLLMx1

q

Template Prompt ( x1  )q

Selected Samples: x1, x2, x3, x4 .
Demo with x1 , repeat for x2, x3, x4 .

q

q

q

q

q q

q q

LLM

μ2

μ2

μ1

μ3

q

μ2

μ4

μ1

selection
μ3

μ2

μ4

μ1 x1
q

x2
q

x4
q

x3
q

q

x1
q

x2
q

x4
q

x3
q

q

propagation

x2
q

x4
q

x3
q

x1
q

Figure 2: The overall ALUP framework. It consists of three main designs: Uncertainty Propagation for region-
based sample selection, Comparison-based Prompting for soliciting more accurate LLM’s feedback, and Soft
Feedback Propagation for wisely spreading the feedback to boost both efficiency and effectiveness.

wrong cluster. However, directly adopting this indi-
vidual uncertainty score for selecting samples can
lead to suboptimal outcomes as it can be sensitive
to outliers (Karamcheti et al., 2021). To address
this issue, following Yu et al. (2023), we further
measure the similarities between each sample and
its neighbors and propagate the individual uncer-
tainty score to neighbors. Specifically, for each
data point xi, we first find its k-nearest neighbors
based on the Euclidean distance as:

N (xi) = KNN
top−k

(zi,Zu), (3)

where Zu denotes the representations of unlabeled
samples and N (xi) represents the set of nearest
neighbors of xi. Then, we calculate the similarities
between xi and its neighbors based on the radial
basis function (RBF) (Schölkopf et al., 1997):

sim(zi, zj) = exp(−ρ∥zi − zj∥22), (4)

where xj ∈ N (xi) and ρ is a hyper-parameter
that regulates the extent of uncertainty propaga-
tion. After measuring the similarities, we refine
the uncertainty score of sample xi as:

u(xi) = u(xi) +

∑
xj∈N (xi)

sim(zi,zj)·u(xj)

|N (xi)| . (5)

After several rounds of uncertainty score propa-
gation, we obtain the final uncertainty score u(xi).

Based on this score, we greedily select one sample
xqi from each cluster ci to form the sample set Q:

xqi = argmax
xj∈ci

(u(xj)). (6)

We emphasize that a sample will exhibit higher
propagated uncertainty only when it and its neigh-
boring samples both possess high uncertainty lev-
els. Hence, we are selecting samples from uncer-
tain regions. By actively obtaining feedback from
LLMs for such samples in Q, we can significantly
improve the model performance in GCD.

3.4 Comparison-based Prompting (CP)
Upon identifying the most informative unlabeled
samples through the UP strategy, we need to query
LLMs to obtain pseudo category labels for these
samples. However, since the category labels of
newly emerged categories remain unknown, it is
infeasible to request LLMs to directly generate pos-
sibly a brand new label for each selected sample.
To overcome this, we design a comparison-based
prompting method from the clustering perspective,
which prompts LLMs to classify a sample by com-
paring it with other samples representing distinct
categories.

This CP method requires the selection of a rep-
resentative sample for each category cluster. To
this end, we first compute the distances of various
samples within the cluster to its center µi, and then
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select the sample closest to µi to represent this clus-
ter. We denote this close-to-center sample as µi.
With these close-to-center samples S = {µi}Ki=1,
we construct the prompt to query LLMs as:

Cluster [c1]: Sample [µ1]; Cluster [c2]: Sample [µ2]; . . . ;

Cluster [cp]: Sample [µp]. Above is a list of samples repre-

senting distinct categories. Please identify one sample that

shares the same or similar underlying category as the input

sample from the provided list.

Here, p is the number of representative sam-
ples used for the comparison. In our experiments,
for each xqi in Q, we empirically incorporate
p = |Q|/2 representative samples that are clos-
est to xqi into the prompt. With this design, we can
effectively utilize LLMs to classify the selected
samples into their corresponding categories, de-
noted as Q = {xqi , yLLMi }Ki=1, thus bypassing the
requirement for explicit labels of unknown cate-
gories.

3.5 Soft Feedback Propagation (SFP)
By querying LLMs using the CP method, we can
endow the selected unlabeled samples with their
respective pseudo labels to augment the GCD mod-
els for discerning new categories. However, a per-
formance gap persists between the partially and
fully LLM-augmented GCD models. Given that
the selection of the unlabeled samples is based on
their model predictive uncertainty and neighboring
uncertainty, and samples distributed close to each
other are more likely to share the same category,
we thus propose a soft feedback propagation mech-
anism to propagate the pseudo labels generated
by LLMs across their similar neighbors, amplify-
ing the utility of the feedback from LLMs without
any additional cost. Specifically, for each xqi in Q,
we refine the model prediction qj of its uncertain
neighbor xj ∈ N (xqi ) in Equation (1) to propagate
the LLM-generated pseudo label yLLMi :

qj = (1− sim(zj , z
q
i )) · qj + sim(zj , z

q
i ) · yLLM , (7)

ypropj =

{
yLLMi , if argmax(qj) = yLLMi

−1, otherwise
, (8)

where sim(·, ·) denotes the similarity function de-
fined in Equation (4). yLLM is a one-hot vector
where the value of position yLLMi is set to 1. To

interpret the Equation (8), we argue that when the
uncertain neighbor xj ∈ N (xqi ) is assigned to the
same cluster as the LLM-labeled sample xqi ac-
cording to the refined qj , the pseudo label yLLMi

will be propagated to the xj . Otherwise, the xj
will reject the pseudo label yLLMi and remain as
an unlabeled sample.

3.6 Model Optimization

After obtaining pseudo labels for the selected unla-
beled samples in Q from LLMs and propagating
these labels via SFP, we update the model using
a supervised contrastive learning loss (Gao et al.,
2021; Guo et al., 2022) as follows:

L =
∑L′

i=1−
1

|N ′(xi)|
∑

xj∈N ′(xi)

log esim(zi,zj)/τ∑
k ̸=i e

sim(zi,zk)/τ , (9)

where L′ denotes the total number of labeled sam-
ples, including both the original labeled samples
and the newly labeled samples obtained via the CP
and SFP. N ′(xi) is the set of samples sharing the
same category label with xi. τ is the temperature.

4 Experiments

4.1 Datasets

We conduct experiments on three GCD datasets:
BANKING (Casanueva et al., 2020), CLINC (Lar-
son et al., 2019), and StackOverflow (Xu et al.,
2015). The detailed statistics are reported in Ap-
pendix A.1. In our experiments, we keep the same
train, development, and test splits as previous work
(Liang and Liao, 2023). More experimental details
are provided in the Appendix A.2.

4.2 Evaluation Metrics

Following (Zhang et al., 2022a; Liang and Liao,
2023), we adopt the three metrics for evaluating
the GCD performance: Accuracy (ACC) based
on the Hungarian algorithm, Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI).
The specific definitions are presented in Appendix
A.3. It is worth noting that ACC is regarded as the
primary metric for evaluation, with higher values
indicating better GCD performance.

4.3 Baselines

We compare with the following SOTA GCD meth-
ods: DTC (Han et al., 2019), CDAC+ (Lin et al.,
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2020), DeepAligned (Zhang et al., 2021b), Prob-
NID (Zhou et al., 2023), DCSC (Wei et al.,
2022), MTP-CLNN (Zhang et al., 2022a), US-
NID (Zhang et al., 2023a), and the best-performing
method CsePL (Liang and Liao, 2023). We leave
the details of these baselines in Appendix A.4.

4.4 Main Results

4.4.1 GCD Performance Comparison
Table 1 presents the main GCD results of our pro-
posed ALUP against existing baselines, where the
peak performance is highlighted in bold. Gener-
ally speaking, our ALUP consistently outperforms
all existing baselines across three datasets by large
margins. We analyze the results as follows:

Comparison of different methods in GCD: Ta-
ble 1 reveals that ALUP significantly outperforms
the existing leading baselines, such as CsePL and
USNID. For example, the proposed ALUP sur-
passes previous SOTA CsePL by margins of 2.51%
in ACC, 2.12% in ARI, and 1.14% in NMI on
BANKING-50%. Notably, the performance gains
are more pronounced when a larger number of cat-
egories remain unknown. For example, ALUP’s
ACC improves by 3.55% on BANKING-25%. This
proves that the ALUP can acquire effective super-
vision signals from LLMs, enhancing the model
performance in discovering new categories.

Comparison of different datasets: We evalu-
ate the performance of the ALUP framework on
different datasets, including the single-domain,
fine-grained BANKING dataset, and the multi-
domain CLINC dataset. From Table 1, we can no-
tice that all existing methods exhibit significantly
lower performance on BANKING compared to
CLINC, indicating that the single-domain fine-
grained scenario is more challenging for GCD.
However, ALUP achieves a more significant im-
provement of 1%~3% on BANKING-50% com-
pared with the CsePL, while only 0.8%~2% on
CLINC-50%. This observation further strengthens
the benefits of our ALUP in providing effective
supervision signals to cope with the challenges in
fine-grained category discovery.

4.5 In-depth Analyses

In this subsection, we conduct further detailed anal-
yses to explore the impact of each key component

within the proposed ALUP framework.

4.5.1 Effect of Uncertainty Propagation

Table 2 presents the experimental results of remov-
ing the UP strategy in Equation (5) from ALUP
on the BANKING dataset. It observes a signifi-
cant reduction in GCD performance across various
known category ratios upon removal. In partic-
ular, the ACC of the ALUP decreases by 1.20%
while the ARI and NMI drop 1.34% and 0.64% on
BANKING-25%, respectively. This indicates that
the UP strategy can accurately identify the most
informative samples for querying LLMs to boost
the GCD model performance. It notably avoids
selecting outliers with high model uncertainty but
which are less beneficial for model learning.

4.5.2 Effect of Soft Feedback Propagation

We also explore the contribution of the SFP mech-
anism by comparing the model performance when
omitting the feedback propagation from LLMs in
Equation (8) with the standard ALUP. Table 2 il-
lustrates a notable decline in model performance
in the absence of SFP, with a decrease of 1.88% in
ACC, 1.67% in ARI, and 0.38% in NMI. Never-
theless, ALUP w/o SFP still slightly outperforms
the best-performing baseline CsePL. We suggest
that this observation can be explained by two main
points: (1) The acquisition of supervision signals
from LLMs for the informative samples is benefi-
cial for enhancing the model’s capacity to discover
new categories. (2) The SFP strategy can effec-
tively propagate the accurate supervision signals
from LLMs, amplifying the utility of LLM’s feed-
back while concurrently minimizing the risk of
propagating errors.

In contrast to the SFP strategy, we also investi-
gate the Hard Propagation strategy within the pro-
posed ALUP (ALUP w HP), where LLMs’ feed-
back is directly extended to the neighboring sam-
ples without any control. As presented in Table 2,
we can observe that the model performance signif-
icantly decreases using the hard propagation, de-
scending even below the levels achieved by CsePL.
This is probably due to the propagation of inaccu-
rate supervision signals from LLMs, which intro-
duces considerable noise into the model learning.
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KCR Methods
BANKING CLINC StackOverflow

ACC ARI NMI ACC ARI NMI ACC ARI NMI

25%

DTC 31.75 19.09 55.59 56.90 41.92 79.35 29.54 17.51 29.96
CDAC+ 48.00 33.74 66.39 66.24 50.02 84.68 51.61 30.99 46.16
DeepAligned 49.08 37.62 70.50 74.07 64.63 88.97 54.50 37.96 50.86
ProbNID 55.75 44.25 74.37 71.56 63.25 89.21 54.10 38.10 53.70
DCSC 60.15 49.75 78.18 79.89 72.68 91.70 - - -
MTP-CLNN 65.06 52.91 80.04 83.26 76.20 93.17 74.70 54.80 73.35
USNID 65.85 56.53 81.94 83.12 77.95 94.17 75.76 65.45 74.91
CsePL 71.06 60.36 83.32 86.16 79.65 94.07 79.47 64.92 74.88
ALUP 74.61 62.64 84.06 88.40 82.44 94.84 82.20 64.54 76.58

50%

DTC 49.85 37.05 69.46 64.39 50.44 83.01 52.92 37.38 49.80
CDAC+ 48.55 34.97 67.30 68.01 54.87 86.00 51.79 30.88 46.21
DeepAligned 59.38 47.95 76.67 80.70 72.56 91.59 74.52 57.62 68.28
ProbNID 63.02 50.42 77.95 82.62 75.27 92.72 73.20 62.46 74.54
DCSC 68.30 56.94 81.19 84.57 78.82 93.75 - - -
MTP-CLNN 70.97 60.17 83.42 86.18 80.17 94.30 80.36 62.24 76.66
USNID 73.27 63.77 85.05 87.22 82.87 95.45 82.06 71.63 78.77
CsePL 76.94 66.66 85.65 88.66 83.14 95.09 85.68 71.99 80.28
ALUP 79.45 68.78 86.79 90.53 84.84 95.97 86.70 73.85 81.45

Table 1: Main performance results on the generalized category discovery across three public datasets. KCR denotes
the known category rate.

KCR Methods
BANKING

ACC ARI NMI

25%

ALUP 74.61 62.64 84.06
- w/o UP 73.41 61.30 83.42
- w/o SFP 72.73 60.97 83.68
- w HP 70.24 59.08 82.32

50%

ALUP 79.45 68.78 86.79
- w/o UP 78.64 67.16 86.05
- w/o SFP 77.66 67.04 86.43
- w HP 75.60 64.33 84.72

Table 2: Ablation results on the BANKING dataset.
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Figure 3: Effect of the number of propagated neighbors.

4.5.3 Number of Propagated Neighbors
To delve deeper into the effectiveness of the UP
strategy within the ALUP framework, we conduct
further experiments on the BANKING dataset to
explore the effect of varying the number of prop-
agated neighbors in unlabeled sample selection
on the model performance. Figure 3 illustrates
performance trends across different counts of prop-
agated neighbors. Notably, as the number of propa-
gated neighbors in Equation (3) increases, ALUP’s
performance improves, reaching an optimum with
25 propagated neighbors. Beyond this point, the
model performance begins to decline. We hypoth-
esize that this decrease might be attributed to the
inclusion of samples with lower uncertainty, which
potentially introduces significant noise into the pro-
cess of unlabeled sample selection.

4.5.4 Effect of Representative Samples
To assess the effectiveness of the CP method, we
examine the impact of varying the number p of rep-
resentative samples integrated into the prompt for
querying LLMs on the model performance. Exper-
iments are conducted with p values set at {19, 38,
57, 77}, where 19 denotes about a quarter of the to-
tal cluster count. As detailed in Table 3, the optimal
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GCD performance is achieved by integrating 38
representative samples into the prompt to acquire
supervision signals from LLMs for the unlabeled
samples. We suggest that the main reasons for this
observation come from two aspects: (1) A smaller
p may potentially omit the representative samples
sharing the same underlying category as the se-
lected samples, possibly limiting LLMs’ ability to
offer the requisite supervision signals during com-
parisons with the integrated representative samples.
(2) Conversely, incorporating a larger number of
representative samples for the CP method results in
an extended prompt length. This could lead LLMs
to misclassify the chosen unlabeled samples into
inaccurate categories, thereby negatively affecting
the model’s performance.

In our standard approach to the CP method, we
select the single closest-to-center sample within
each cluster as the representative for constructing
prompts to query LLMs. Expanding our investi-
gation into the CP method, we experiment with
an alternative strategy involving a close-to-center
set—specifically, the top 3 samples nearest to the
cluster center—to represent distinct clusters for
prompting LLMs to determine pseudo category la-
bels. As illustrated in Table 4, the experimental
results on BANKING-25% demonstrate marginal
gains with this strategy, achieving an increase of no
more than 0.5% across all three metrics. Nonethe-
less, it necessitates an increased querying cost with
LLMs. Balancing the slight improvement in perfor-
mance against the rise in costs, we thus opt for the
more straightforward and cost-effective strategy
of utilizing single closest-to-center samples within
the CP method.

4.6 Impact of Different Base GCD Models

In our experiments, we select the most informa-
tive unlabeled samples based on the existing GCD
models. To validate the effectiveness of the pro-
posed ALUP, we also examine how its performance
varies when different GCD models are integrated
within ALUP on the BANKING-50% dataset. As
depicted in Figure 4, we can observe consistent
and significant improvements with the proposed
ALUP. This demonstrates that the proposed ALUP
framework is effective in acquiring supervision sig-
nals from LLMs to enhance the model performance
of discovering new categories and is adaptable to

KCR p
BANKING

ACC ARI NMI

25%

19 73.70 61.40 83.58
38 74.61 62.64 84.06
57 72.01 60.86 83.04
77 71.36 59.58 82.64

50%

19 78.44 67.46 86.25
38 79.45 68.78 86.79
57 77.56 66.04 85.93
77 76.66 65.23 85.59

Table 3: Effect of the number of representative samples
within the CP method.

Methods
BANKING

ACC ARI NMI

ALUP-standard 74.61 62.64 84.06
ALUP-close-to-center set 74.87 63.07 84.39

Table 4: Performance of representative sample selection
strategies within the CP method on BANKING-25%.

MTP-CLNN USNID CsePL
50

55

60

65

70

75

80

85

90

A
C

C

Baseline
Baseline with ALUP

Figure 4: Performances of various base GCD models in
ALUP on the BANKING-50%.

other GCD models.

4.7 Influence of Query Sample Number

We study the effect of varying the number of se-
lected unlabeled samples for querying LLMs in
Figure 5. It is observed that there is an increase in
model performance corresponding to the rise in the
number of samples selected for querying LLMs.
Yet, this growth rate progressively diminishes as
the LLMs’ feedback is propagated, and selecting
informative samples becomes more challenging
with the increasing number of selected samples.
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Figure 5: Effect of the number of query samples on
BANKING-50%.

Methods
BANKING

ACC ARI NMI

ALUP-gpt-3.5-turbo 74.61 62.64 84.06
ALUP-FlanT5-XXL 73.38 62.29 83.76
ALUP-text-embedding 71.95 61.48 83.7

Table 5: Effect of different LLMs.

4.8 Effect of Different LLMs

We also examine the performance impact of utiliz-
ing different LLMs within our ALUP. Specifically,
we conduct experiments on BANKING-25%, com-
paring the performance of the closed-source gpt-
3.5-turbo against the open-sourced FlanT5-XXL
in deriving supervision signals. As shown in Ta-
ble 5, the experimental results illustrate a marginal
performance decrease when employing FlanT5-
XXL compared to gpt-3.5-turbo. Despite this, the
use of FlanT5-XXL still markedly outperforms the
best-performing baseline CsePL, highlighting the
adaptability of our ALUP to various LLMs.

Furthering our exploration into the mechanisms
of LLMs’ utilization in GCD, we evaluate the ef-
ficacy of our CP method against an alternative ap-
proach based on embedding similarity scores. For
this comparison, we leverage the embedding model
text-embedding-3-small from OpenAI to generate
embeddings for both uncertain samples and cluster-
representative samples, calculating their similar-
ity scores to determine pseudo category labels.
As reported in Table 5, the results demonstrate
a drop in performance metrics using the embed-
ding score method, underscoring the rationale of
our CP method and its proficiency in capturing the
nuanced semantic relationships essential for GCD.

5 Conclusion

In summary, our ALUP framework innovatively
integrates Large Language Models with uncer-
tainty propagation in generalized category discov-
ery, marking a significant leap in the field. By
employing comparison-based LLM prompting and
a novel soft feedback propagation mechanism,
ALUP adeptly identifies and categorizes new data
with enhanced accuracy and efficiency. This ap-
proach not only surpasses traditional GCD meth-
ods but also minimizes the risk of error propaga-
tion, a critical advancement in handling real-world,
dynamic datasets with LLMs. Future endeavors
will focus on refining LLM integration, extending
our methods to multi-modal data, and enhancing
scalability and data privacy measures, furthering
ALUP’s potential in diverse and evolving open-
world computing.
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Limitations

While our ALUP framework marks a significant
advance in Generalized Category Discovery us-
ing LLMs, it does have some limitations. The
reliance on LLMs can introduce biases and inac-
curacies, particularly in areas where these models
have limited training data or exposure. Although
our propagation method effectively reduces overall
costs, the initial computational demands of LLMs
may still pose scalability challenges, especially
for resource-limited environments. Additionally,
the framework currently focuses on textual data,
which could limit its applicability in multi-modal
data scenarios. Moreover, while our soft feedback
propagation mechanism aims to minimize error
spread, it is not immune to the risk of amplifying
initial inaccuracies from LLM feedback. Finally,
data privacy and security remain critical concerns
in the use of external LLMs, necessitating ongoing
vigilance and adaptation.
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A Appendix

A.1 Dataset Statistics

We show the detailed statistics of BANKING,
CLINC and StackOverflow datasets in Table 6.
Specifically, BANKING is a fine-grained category
discovery dataset collected from user dialogues in
the banking domain. It contains over 13K user
utterances that span over 77 distinct categories.
CLINC is a multi-domain dataset, which encom-
passes 150 distinct categories and 22,500 utter-
ances across 10 domains. StackOverflow is a tech-
nical question dataset collected from Kaggle.com,
which includes 20K questions with 20 categories.

A.2 Implementation Details

For the dataset setup, following Zhang et al.
(2023a), we randomly select a specified ratio {25%,
50%} of categories, denoted as known category
rate (KCR), to serve as known categories. For each
known category, 10% of labeled samples are se-
lected to constitute a labeled dataset Dl, while the
remaining samples are deemed as unlabeled data,
forming the unlabeled dataset Du.

For the Uncertainty Propagation, we set the free-
dom α in Equation (1) to 1.0. The number of
propagated neighbors is specifically set to 25 for
all datasets. The ρ for calculating similarities in
Equation (4) is set to 1.0.

For the Comparison-based Prompting, we em-
ploy the gpt-3.5-turbo as the basic LLM in our
experiments. While acquiring supervision signals,
the temperature is set to 0 for deterministic out-
puts, and the maximum tokens are constrained to
256. The default values are retained for the rest
of the parameters. The number of representative
samples is specifically set to 38 for the BANKING
dataset, 75 for the CLINC dataset, and 20 for the
StackOverflow dataset.

A.3 Evaluation Metrics

In the experiments, we employ three standard eval-
uation metrics: ACC, ARI, and NMI to evaluate
the GCD performance. Specifically, ACC mea-
sures the performance of GCD by comparing the
predicted labels with the ground-truth labels. The
definition of ACC is as follows:

ACC =

∑N
i=1 1yi=map(ŷi)

N

Dataset Domain Categories Utterances

BANKING banking 77 13,083
CLINC multi-domain 150 22,500

StackOverflow question 20 20,000

Table 6: Statistics of datasets used in the experiments.

where {ŷi, yi} denote the predicted label and the
ground-truth label for a given sample xi respec-
tively. map(·) is a mapping function that maps
each predicted label ŷi to its corresponding ground-
truth label yi by Hungarian algorithm.

ARI calculates the similarity between the pre-
dicted and ground-truth clusters, assessing the ac-
curacy of clustering on a pairwise basis. ARI is
defined as:

ARI =
∑

i,j

(ni,j
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where ui =

∑
j ni,j , and vj =

∑
i ni,j . N denotes

the number of all samples. ni,j is the number of
sample pairs that are both assigned to ith predicted
cluster and jth ground-truth cluster.

NMI computes the normalized mutual informa-
tion to quantify the agreement between the pre-
dicted and ground-truth clusters, providing a mea-
sure of clustering consistency. It can be calculated
as follows:

NMI(ŷ,y) =
2 · I(ŷ,y)

H(ŷ) +H(y)

where {ŷ,y} denote the predicted labels and the
ground-truth labels respectively. I(ŷ,y) is the mu-
tual information between ŷ and y. H(·) represents
the entropy function.

A.4 Baselines
In this work, we compare the proposed ALUP with
the following representative baselines:
• DTC (Han et al., 2019): A semi-supervised deep

clustering approach with a novel mechanism for
estimating the number of intents based on labeled
data.

• CDAC+ (Lin et al., 2020): A pseudo-labeling
approach that employs pairwise constraints and a
target distribution as guiding factors in the learn-
ing of new categories.

• DeepAligned (Zhang et al., 2021b): A semi-
supervised approach that addresses the clustering
inconsistency problem by using an alignment
strategy for learning utterance embeddings.
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Cluster Num Methods
Banking77

ACC ARI NMI

K = 77 (gold)
USNID 65.85 56.53 81.94
CsePL 71.06 60.36 83.32
ALUP 74.61 62.64 84.06

K = 74 (predicted)
USNID 60.72 49.18 78.11
CsePL 69.75 56.70 81.30
ALUP 72.55 61.04 82.78

Table 7: Effect of estimating cluster number K.

• ProbNID (Zhou et al., 2023): A probabilistic
framework that capitalizes on the expectation-
maximization algorithm, conceptualizing intent
assignments as probable latent variables.

• DCSC (Wei et al., 2022): A pseudo-labeling
method involving the dual-task, which uses the
SwAV algorithm and Sinkhorn-Knopp (Cuturi,
2013) to assign soft clusters.

• MTP-CLNN (Zhang et al., 2022a): A two-stage
method that enhances representation learning via
a multi-task pre-training and a nearest neigh-
bor contrastive learning for identifying new cate-
gories.

• USNID (Zhang et al., 2023a): A framework
supports both unsupervised and semi-supervised
new intent discovery, incorporating an effec-
tive centroid initialization strategy designed to
learn cluster representations by utilizing histori-
cal clustering information.

• CsePL (Liang and Liao, 2023): A method that
utilizes two-level contrastive learning with label
semantic alignment to enhance the cluster seman-
tics and a soft prompting strategy for discovering
new intents.

We re-run the released code of ProbNID to get its
results. The other baselines’ results are retrieved
from Zhang et al. (2023a).

B Estimate the Category Number K

In the complex task of generalized category discov-
ery in real-world scenarios, accurately predicting
the total number of categories, represented as K,
remains a significant challenge. Drawing from the
methodologies proposed by Zhang et al. (2021b),
our research leverages pre-initialized intent fea-
tures to determine K autonomously. We begin by
assigning an initially large number of clusters, K ′,
and then utilize a refined model to extract feature

representations from our training dataset. These
representations are grouped into distinct clusters
using the K-means algorithm. Clusters that are
densely populated and demonstrate well-defined
boundaries are recognized as valid category clus-
ters. Conversely, smaller, less distinct clusters
are considered less relevant and subsequently dis-
carded. The selection criteria for this process can
be outlined as follows.

K =

K′∑
i=1

δ(|Si| > ρ),

where |Si| is the i-th grouped cluster size, ρ is the
filtering threshold. δ(·) denotes the indicator func-
tion, whose output is 1 if the condition is satisfied.

Experimental results are reported in Table 7.
The comparative results show that the proposed
ALUP incurs only a minor performance decline
with the predicted category number. This indicates
that our ALUP exhibits robustness in handling in-
accurately predicted category number.
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