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ABSTRACT
Multimodal dialogue systems attract much attention recently, but
they are far from skills like: 1) automatically generate context-
specific responses instead of safe but general responses; 2) natu-
rally coordinate between the different information modalities (e.g.
text and image) in responses; 3) intuitively explain the reasons
for generated responses and improve a specific response without
re-training the whole model. To approach these goals, we propose
a different angle for the task — Reflecting Experiences for Response
Generation (RERG). This is supported by the fact that generating a
response from scratch can be hard, but much easier if we can access
other similar dialogue contexts and the corresponding responses.
In particular, RERG first uses a multimodal contrastive learning
enhanced retrieval model for soliciting similar dialogue instances.
It then employs a cross copy based reuse model to explore the
current dialogue context (vertical) and similar dialogue instances’
responses (horizontal) for response generation simultaneously. Ex-
perimental results demonstrate that our model outperforms other
state-of-the-art models on both automatic metrics and human eval-
uation. Moreover, RERG naturally provides supporting dialogue
instances for better explainability. It also has a strong capability in
adapting to unseen settings by simply adding related samples to
the retrieval datastore without re-training the whole model.
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Hey, I am traveling with a group
of four people, looking for a
moderate price restaurant. Can
you help me?
Hi. Do you have preferred location?

Better be in downtown core. I
would like to try some jamon
serrano.

Hi! Can you help me
look for a moderate
price restuarant to try
jamon serrano?
Anywhere in the region
in particular?
Yes, the downtown core
please.

I would recommend the
botanic! They have alot
of great jamon serrano
that you can try out
along with other dishes.

Please reserve a place for me
to try jamon serrano.

Sure, which region do you
prefer?

Should be in downtown core.
I am with a group of four
people. Don't want to go far.

Got it. The botanic is good.
Great food with imaginative
options, nice service, great
ambience, good wine selection
by glass and bottle. Try the
anchovies on toast.

What type of food would you like? 

I think western food will be good.

I recommend the botanic. The food 
there is nice. Here are some pictures.

Figure 1: Example dialogue for venue recommendation,
where two similar cases provide useful guidance.

1 INTRODUCTION
Multimodal dialogue system receives great attention in both academia
and industry due to its growing application in reality. Generating
fluent and informative natural responses is the ultimate goal of such
systems. The task typically involves two sub-problems: 1) learning
fixed-sized representations for the multimodal dialogue context,
and 2) mapping the representations to the responses in various
forms. Many methods have been developed to address these two
sub-problems separately or in an end-to-end fashion. For example,
Zhang et al. [45] presented a relational graph-based context-aware
question understanding scheme to achieve global user intention
comprehension. Nie et al. [28] designed adaptive decoders to gen-
erate the desired responses, and Liao et al. [24] tried to integrate
domain knowledge for more intelligent response generation.

Although these existingmultimodal dialogue systems have shown
promising performance, they still suffer from the following issues:
1) Most existing models emphasize the context-response mapping
that maximizes 𝑃 (𝑅 |𝐶) over the whole training corpus, where 𝐶
is the given dialogue context and 𝑅 is the ground-truth response,
or 𝑃 (𝑅 |𝐶,𝐾) when some external knowledge 𝐾 is incorporated. It
tends to assign high probabilities to safe but universal responses
[21]. Especially for task-oriented multimodal dialogues, such gen-
eral responses would possibly fail to fulfill the user’s specific re-
quirements, leaving the user unsatisfied; 2) The responses in dif-
ferent modalities are often treated separately (e.g. CNN for image
response ranking and RNN for textual response generation). This
makes the coordination between these response components a
hard task, which may lead to unnatural responses; 3) The current
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popular end-to-end modeling scheme hinders the explainability
of generated responses. If we hope to improve the responses for a
certain fraction of dialogue situations, re-training the whole model
is usually required, and catastrophic forgetting will be an issue.

To address the aforementioned challenges, we tackle the re-
sponse generation task from a different angle — explicitly making
use of similar experiences. This roots from the observation that
humans often solve a new problem by recollecting and adapting
the solution to multiple related problems that they encountered
in the past [33, 35]. This model of reasoning has been applied by
case-based reasoning (CBR) [34] in classical artificial intelligence
[20, 32]. A sketch of a CBR system typically consists of (a) a re-
trieval module which retrieves similar cases to the given problem
and (b) a reuse module where the solutions of the retrieved cases
are reused to synthesize a new solution. When the new solution
cannot be used directly, there might be a revise module to do some
revision. Intuitively, such a system has the potential to mitigate
the challenges we are facing in multimodal dialogues, because the
similar cases would allow us to refine the existing training corpus
level analysis while zoom into similar dialogue sessions for more
targeted and detailed analysis. For example, as shown in Figure 1,
the similar cases provides rather specific response samples with
natural modality coherence. These cases also explain where the
final response came from and the response can be further improved
by adding better cases.

However, the components of CBR are typically implemented
with symbolic systems in the early days [1], which has largely lim-
ited its applications. For instance, finding similar dialogue contexts
and synthesizing new responses will be a challenging task for a
CBR system with symbolic components. Fortunately, the recent
advancements in representation learning and various neural mod-
els have shed light on the possibility of applying CBR with neural
components, which can largely boost the generality and applica-
bility of such reasoning scheme in practical tasks. For instance,
very recently, CBR has been successfully applied in KB reasoning
[7, 8], natural language modeling [18] and machine translation [17]
etc. Nonetheless, these approaches do not handle complex dialogue
queries and only operate on structured triple queries or pure textual
sequences.

In this work, we propose a neural components based CBR frame-
work to Reflect on Experiences for Response Generation (RERG).
The key lies in (1) an effective retrieval module that learns discrimi-
native representations for multimodal dialogue contexts and selects
similar experiences or cases for a given context accurately; and (2)
an adaptable reuse module that abstracts the common characteris-
tics over the retrieved dialogue sessions, and incorporates them into
the new response generation based on current dialogue context.
Specifically, we adapt unsupervised contrastive learning on both
text and image part of the dialogue context to learn better intra-
modality representations. Then, for each dialogue context with its
positive and negative similar cases, we use triplet ranking loss to
enforce the retrieval model learn better context representations
and inter-modality relations. With well-selected similar cases, the
reuse model predicts responses by automatically copying segments
from its context vertically and copying segments from similar case
responses horizontally, while selects image response accordingly.
This allows the contentful patterns in previous contexts and other

appropriate responses to be easily leveraged explicitly, rather than
being memorized implicitly in latent representations or neural net-
work parameters.

Moreover, the retrieve and reuse nature of the RERG frame-
work enhances the explainability of generated responses via these
retrieved cases. It also improves the generalizability of RERG in
adapting to unseen dialogue situations simply by adding related
samples to the retrieval datastore, while most of the current neu-
ral models cannot handle such cases without a time-consuming
re-training or finetuning process. When dealing with new situa-
tions after the similar cases addition, RERG is able to adapt their
responses to compose a targeted solution. Without the need of
re-training neural parameters, it not only offers the fast adaptabil-
ity but also overcomes the obstacle of catastrophic forgetting [19]
which is commonly faced by other re-trained models.

To sum up, the contributions of this work are as follows:
• We propose to tackle the response generation task by reflect-
ing on experiences. Instead of generating from scratch, the
proposed RERG method recollects and adapts the responses
from similar dialogue situations.
• We propose a multimodal contrastive learning enhanced neu-
ral retrieval model for selecting similar dialogue cases, and
design a cross copy based reuse model to leverage contentful
response patterns in both vertical and horizontal directions.
• Extensive experiments show that the proposed RERGmethod
significantly outperforms several state-of-the-art models
both on automatic evaluation metrics and human evaluation.
We also demonstrate the explainability and good generaliz-
ability of RERG to unseen situations by experiments.

2 RELATEDWORK
2.1 Task-oriented Response Generation
Task-oriented dialogue system has been largely explored in pure-
text settings. Traditionally, it is constructed in a pipe-lined structure
with four separated modules [11, 27, 47]. More recently, the end-
to-end neural network has been largely employed to alleviate the
information loss problem in pipe-lined systems [41, 48? ]. One line
of work benefits from the fast-learning capability and generalizabil-
ity of large pre-trained language models, such as BERT [9] or GPT-2
[31]. Subsuming different modules into a single language model,
these methods concatenate dialogue context, intermediate results,
and response into a long sequence [15, 30, 43]. However, these meth-
ods oversimplify the task into a unidirectional language modeling
task, where the likelihood of the generated word sequence is maxi-
mized over the whole training corpus, leading to safe but general
responses. Another line of work adopts a variational autoencoder
structure that decouples the direct context-response mapping by
introducing latent variables in the middle [40, 49]. Although en-
hanced performance in fulfilling user requests has been achieved by
these methods, the comprehensibility of the generated responses
is often corrupted due to its single optimization goal towards task
completion.

Under such background, multimodal dialogue systems further
incorporate other information modalities such as image to make
communications more vivid and attract much attention. The re-
sponse generation task of it generally follows a similar end-to-end
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modeling tradition — learning better multimodal context represen-
tations and better mapping the representations to responses. In
[24, 39], they incorporated external domain knowledge and sent
these combined high-level representations to generate more desir-
able responses in fashion domain. Firdaus et al. [10] utilized graph
convolutional networks to extract information from dependency
parsing tree of text and combined this with image encoder to gen-
erate responses. There are also works that introducing hierarchical
attention mechanism or adaptive decoding scheme to improve the
representation learning and context-to-response mapping [6, 45].
However, these methods suffer from the problems of generating
safe answers, weak coordination between response modalities and
lack of explainability as well as generalizability. In our work, instead
of directly optimizing the mapping from context representation to
responses, we first look for some similar cases and then leverage
these experiences to help learning better mappings.

2.2 Case-based Reasoning
Reflecting experiences for response generation is naturally linked
to the case-based reasoning (CBR), in which a reasoner remembers
previous situations similar to the current one and uses that to solve
the new problem. It is a recent approach to problem solving and
learning that has got a lot of attention over the last few years [1]. In
its early days, CBR typically consists of components with symbolic
systems, which largely confined its apllications.

Recently, the development of deep learning models enables wider
applicability of CBR. For example, it has achieved promising results
in Knowledge Base (KB) related tasks. The model in [18] retrieved
similar entities and utilized the reasoning path from them for KB
completion. Das et al. [8] proposed to form a new structured logical
KB query for the given natural language question by reusing similar
logical queries from similar questions. However, the former one only
performs reasoning over structured triplet queries and generates
simple path patterns. Although the latter handles natural language
questions, our model deals with more complex dialogue situations
and constructs human-like informative responses instead of purely
structured logical forms.

Most CBR applications in other NLP tasks are based on the
k-nearest neighbors (kNN) model to retrieve relevant training ex-
amples at the test stage. For instance, Khandelwal et al. [18] utilized
k nearest explicit training examples to extend the pre-trained lan-
guage model and obtained improved performance. In the field of
machine translation, Khandelwal et al. [17] applied kNN to retrieve
similar cases at the token level for better next word prediction.
Zheng et al. [51] instead proposed an adaptive kNN that dynam-
ically determines the number of referenced neighbors. Different
from these works that directly reuse the chosen retrieved results,
the final responses of our model incorporate both knowledge from
the current case context and the retrieved similar cases’ solutions.
Also, compared to the simple kNN retrieval model in these works,
the multimodal contrastive learning and triplet ranking loss in our
model help to gather more accurate experiences. Our model also
shares some similarities with the prototype editing paradigm in
[42].However, they only retrieve one single prototype, and thus the
performance strongly depends on the relevance and quality of it.
Our model instead leverages multiple relevant instances.

2.3 Contrastive Learning
Learning distinctive representations for multimodal dialogue con-
text is one of the key problems for response generation. Contrastive
learning aims to learn effective representations by pulling seman-
tically close neighbors together and pushing apart non-neighbors
[13], which naturally fits our goal. In recent years, many promi-
nent approaches have come into play and drawn much attention,
such as MoCo [14], SimCLR [4], SimCSE [12] etc. In the dialogue
generation area, there also has emerged a trend of applying con-
trastive learning. For instances, in [3], the authors made contrastive
pairs between contextual sentences and responses for learning high-
quality sentence embeddings from dialogue turns. To capture and
summarize various topic information from dialogue turns, Liu et al.
[26] designed two contrastive objectives which consist of coherence
detection and summary examination.

Different from the above efforts, instead of just focusing on the
uni-modal information, we utilize contrastive learning to learn bet-
ter representations for multimodal dialogue contexts. Although
there are works that targeted at cross-modal contrastive learning
[22, 52] or multimodal contrastive training [44], these efforts tend
to emphasize on the intra-modality and inter-modality similarity
at the same time. In our work, since the text and image contents
are less coupled than these image captioning datasets, we use un-
supervised contrastive learning to ensure intra-modality similarity
while adopt triplet ranking loss to ensure dialogue context level
similarity between cases.

3 THE RERG METHOD
In this section, we formally introduce our proposed RERG approach
as illustrated in Figure 2. Following the typical CBR sketch, it con-
sists of a neural retrieval model for selecting similar cases and a
neural reuse model for generating the final multimodal responses.
In our multimodal dialogue response generation setting, a case is
a multimodal dialogue context paired with its corresponding re-
sponse. For example, Figure 1 shows a specific dialogue setting with
two similar cases.

In what follows, we will first give a formal definition of the
multimodal response generation task and the setting of reflecting
experiences. Then, the retrieval and the reuse models will be intro-
duced subsequently. Generally speaking, the retrieval model first
leverages unsupervised contrastive learning to harvest effective
representations for both image and text parts of dialogue contexts.
It then adopts a triplet ranking loss to enforce similarity relations
among the dialogue context level representations. The reuse model
on the other hand, generates high-quality responses by dynami-
cally integrating information from both the retrieved similar cases’
responses and the dialogue context.

3.1 Formulation
We first denote the multimodal dialogue training dataset as 𝐷 =

{(𝐶1, 𝑅1), (𝐶2, 𝑅2), · · · , (𝐶𝑁 , 𝑅𝑁 )}, which comprises 𝑁 multimodal
dialogue context-response pairs. Specifically,𝐶𝑖 represents dialogue
context while 𝑅𝑖 denotes its corresponding response. Since the
context and response may contain both textual part and image part,
we denote the corresponding text components as 𝐶𝑆

𝑖
, 𝑅𝑆
𝑖
, and the

image components as𝐶𝐼
𝑖
, 𝑅𝐼
𝑖
in context and response respectively. In
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Figure 2: Architecture of the proposed RERG model. The retrieval model learns distinctive representations for dialogue context
via multimodal contrastive learning and triplet ranking loss. With retrieved similar cases, the reuse model integrates contentful
patterns from previous context vertically and other responses horizontally.

detail, the textual context part consists of belief state and three turns
of utterances. We concatenate these into a long textual sequence
to form 𝐶𝑆

𝑖
. For image part, since not every dialogue turn involves

image, we use the most recent image within the three turns as 𝐶𝐼
𝑖
.

Preliminary experiments show that this helps to yield coherent
contexts.

Hence, the response generation task can be formulated as: given
a set of training instances 𝐷 , we aim to learn a model that can pre-
dict response 𝑅′ for given dialogue context 𝐶 where 𝑅′ should be
close to the target 𝑅. In the reflecting experiences setting, instead of
predicting 𝑅′ from scratch, the proposed RERG model first retrieves
𝐾 similar cases 𝐷𝐾 from 𝐷 (Subsection 4.5.2). It then predicts the
response 𝑅′ by learning to reuse segments from responses of the
retrieved cases (Subsection 3.3). We evaluate the model by calcu-
lating the difference between the generated response 𝑅′ and the
target response 𝑅 while also check the task completion metrics.

3.2 Retrieval
3.2.1 Intra-modality Contrastive Learning. The green box (left) in
Figure 2 illustrates the retrieval model. It first encodes the textual
and visual part of the dialogue context via self-supervised repre-
sentation learning. We give more details as follows.
Textual Contrastive Learning. For the textual dialogue context
part, we apply dropout masks in a way similar to SimCSE [12] to
conduct self-supervised representation learning. Suppose there is a
collection of textual contexts {𝐶𝑆

𝑖
}𝑁
𝑖=1, we design a text encoder 𝑓𝑠

to encode each specific context 𝐶𝑆
𝑖
as:

𝑠
𝑧𝑖
𝑖

= 𝑓𝑠 (𝐶𝑆𝑖 , 𝑧𝑖 ;\𝑠 )

where 𝑧𝑖 is a random mask for dropout. The key for contrastive
learning here is to feed the same input context 𝐶𝑆

𝑖
to the BERT

encoder 𝑓𝑠 twice and get two embeddings as a positive pair with
different dropout masks 𝑧𝑖 and 𝑧′𝑖 . Hence, the training objective
inside a minibatch becomes:

𝐿𝑡𝑒𝑥𝑡𝑢𝑎𝑙 = −log
𝑒𝑥𝑝 (𝑠𝑧𝑖

𝑖
· 𝑠𝑧
′
𝑖

𝑖
/𝜏)∑𝑁 ′

𝑗=0 𝑒𝑥𝑝 (𝑠
𝑧𝑖
𝑖
· 𝑠
𝑧′
𝑗

𝑗
/𝜏)

, (1)

where 𝜏 is a temperature parameter and 𝑁 ′ is the minibatch size.

Visual Contrastive Learning. Following MoCo-v2 [5] for visual
representation learning, we denote the image encoder as 𝑓𝑞 (·;\𝑞)
and momentum image encoder as 𝑓𝑘 (·;\𝑘 ), where \𝑞 and \𝑘 are the
network parameters. The weights \𝑘 are updated with momentum
coefficient 𝑚: \𝑘 ← 𝑚\𝑘 + (1 −𝑚)\𝑞 . Suppose 𝐶𝐼𝑖

′ and 𝐶𝐼
𝑖

′′ are
augmented examples for the same input image 𝐼𝑖 in a minibatch,
the image encoder and momentum encoder will embed them to
query and key feature vectors:

𝑞𝑖 = 𝑓𝑞 (𝐶𝐼𝑖
′;\𝑞)

𝑘𝑖 = 𝑓𝑘 (𝐶𝐼𝑖
′′;\𝑘 ).

We maintain a dynamic set of key feature vectors with length𝑀
by iterative dequeue and enqueue operations. For a query feature
vector 𝑞𝑖 in the current batch, if 𝑘𝑖 in the queue is originated from
the same image, we denoted it as 𝑘+

𝑖
to form a positive pair with 𝑞𝑖 .

Hence, the visual self-supervised contrastive loss is defined as :

𝐿𝑣𝑖𝑠𝑢𝑎𝑙 = −log
𝑒𝑥𝑝 (𝑞𝑖 · 𝑘+𝑖 /𝜏)∑𝑀
𝑗=0 𝑒𝑥𝑝 (𝑞𝑖 · 𝑘

𝑗
𝑖
/𝜏)

, (2)

where all key feature vectors in the dynamic queue are considered.

3.2.2 Triplet Ranking. The intra-modal training scheme captures
the intrinsic patterns of augmented text and image examples. How-
ever, self-supervised methods lack of the ability to learn semantic
information from higher-level similarity among multimodal dia-
logue contexts. We address such limitation by using triplet ranking
loss to enforce similarity relations between dialogue contexts. We
first embed context 𝑐𝑖 as 𝑐𝑖 = 𝑓𝑀𝐿𝑃 ( [𝑠𝑖 ;𝑞𝑖 ]) where [·; ·] is the con-
catenation operation and 𝑓𝑀𝐿𝑃 is a MLP network. Suppose 𝑐+

𝑖
is the

positive similar case to 𝑐𝑖 and 𝑐−𝑖 is the batch-hardest case by on-
line triplet mining [36], we train the whole representation learning
network via triplet ranking loss with margin 𝜖 as:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =𝑚𝑎𝑥 (0, 𝜖 − 𝑠𝑖𝑚(𝑐𝑖 , 𝑐+𝑖 ) + 𝑠𝑖𝑚(𝑐𝑖 , 𝑐
−
𝑖 )) . (3)

Finally, the retrieval model is trained via the total loss as below:

𝐿𝑟𝑒𝑡𝑟𝑖𝑣𝑎𝑙 = 𝐿𝑡𝑒𝑥𝑡𝑢𝑎𝑙 + _1 · 𝐿𝑣𝑖𝑠𝑢𝑎𝑙 + _2 · 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 , (4)

where _1, _2 are coefficients. We use the trained model to extract
features for contexts and calculate dot products between them for
similarity ranking.
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3.3 Reuse
The essence of reuse model is to learn a mapping (𝐷𝐾 ,𝐶) → 𝑅 for
each training instance. It contains reusing these resources for both
text response generation and image response generation.

3.3.1 Reuse for Text Response. Inspired from [16], the text response
generation model generates response from context 𝐶𝑆 via encoder-
decoder network. At each decoding step, it learns to attend to the
dialogue context 𝐶𝑆 vertically and the similar cases’ responses
𝑅𝑆1 , 𝑅

𝑆
2 , · · · , 𝑅

𝑆
𝐾
in 𝐷𝐾 horizontally to select out useful information.

It is illustrated in the blue box (right) in Figure 2.
We first introduce the encoder part. We use bi-directional gated

recurrent units (GRU) to encode the dialogue contexts. For example,
we feed the current dialogue context𝐶𝑆 into the encoder and get the
encoded representation 𝐻𝐶

𝑆
= [𝑣1, · · · , 𝑣𝐶

𝑆

|𝐶𝑆 |] ∈ R
|𝐶𝑆 |×𝑑𝑣 , where

𝑑𝑣 is the hidden size and |𝐶𝑆 | denotes the token numbers in context.
Moreover, we calculate a summarized vector representation ℎ𝐶

𝑆

for context by token level attention:

ℎ𝐶
𝑆

=

|𝐶𝑆 |∑︁
𝑖=0

𝑎𝑖 · 𝑣𝑖 ,

𝑎𝑖 =
𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊1 · 𝑣𝑖 ) · 𝑣𝑖 )∑ |𝐶𝑆 |
𝑗=0 𝑒𝑥𝑝 (𝑡𝑎𝑛ℎ(𝑊1 · 𝑣 𝑗 ) · 𝑣 𝑗 )

,

where𝑊1 is a learnable weight matrix. Similarly, for each dialogue
context of the retrieved cases in 𝐷𝐾 , we obtain the encoded context
representations ℎ𝐶

𝑆
1 , · · · , ℎ𝐶𝑆𝐾 in sequence level. When feed the

similar cases’ responses into the encoder, we also get the encoded
response representations 𝐻𝑅

𝑆
1 , · · · , 𝐻𝑅𝑆𝐾 in token level.

We also use GRU as our decoder. At the decoding step 𝑡 , the
decoder GRU takes a token embedding𝑤𝑡−1 as its input and returns
a hidden state ℎ𝑑𝑒𝑐𝑡 . It first maps the hidden state ℎ𝑑𝑒𝑐𝑡 into the
vocabulary space using the trainable embedding 𝐸 ∈ R |𝑉 |×𝑑𝑣 :

𝑃𝑣𝑜𝑐𝑎𝑏𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐸 · (ℎ𝑑𝑒𝑐𝑡 )𝑇 ) ∈ R |𝑉 |,

where |𝑉 | is the vocabulary size. This is the vallina decoding prob-
ability in a typical encoder-decoder network
Vertical Copy. The decoder will also attend to the current dialogue
context𝐶𝑆 to pick up some useful information. The attentionweight
over the context tokens is calculated as in [2]:

𝑃𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑣𝑇𝐶 · 𝑡𝑎𝑛ℎ(𝑊𝑒𝑛𝑐1 · 𝐻
𝐶𝑆 +𝑊𝑑𝑒𝑐1 · ℎ𝑑𝑒𝑐𝑡 )),

where 𝑣𝐶 ,𝑊𝑒𝑛𝑐1 and𝑊𝑑𝑒𝑐1 are learnable parameters. Hence, the
output distribution of tokens is weighted sum of the two distribu-
tions:

𝑃𝑚𝑖𝑑𝑑𝑙𝑒𝑡 = 𝛼 × 𝑃𝑣𝑜𝑐𝑎𝑏𝑡 + (1 − 𝛼) × 𝑃𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑡 ,

𝛼 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊2 · [ℎ𝑑𝑒𝑐𝑡 ;𝑤𝑡−1; 𝑃𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑡 · 𝐻𝐶
𝑆

]),

where𝑊2 is a trainable weight matrix, and 𝛼 is trainable to combine
the two distributions together. It determines whether to i) predict a
token from context mapping or ii) copy a token from the current
dialogue context.
Horizontal Copy. Since responses often contain some rare phrases
such as locations, venue names, or phone numbers etc. which are

hard for models to memorize in network parameters, we thus allow
the decoder to attend to similar responses for copying.

First of all, we use context similarity to calculate the weight for
each reference response 𝑅𝑆

𝑘
in 𝐷𝐾 :

𝛾𝑘 =
𝑒𝑥𝑝 (ℎ𝐶𝑆 · ℎ𝐶𝑆

𝑘
)∑𝐾

𝑗=0 𝑒𝑥𝑝 (ℎ𝐶
𝑆 · ℎ𝐶𝑆

𝑗
)
.

Then, for each reference response 𝑅𝑆
𝑘
, the attention weight over

each response token is calculated as

𝑃𝑡
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
𝑘

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑣𝑇𝑅 · 𝑡𝑎𝑛ℎ(𝑊𝑒𝑛𝑐2 · 𝐻
𝑅𝑆
𝑘 +𝑊𝑑𝑒𝑐2 · ℎ𝑑𝑒𝑐𝑡 )),

where 𝑣𝑅 ,𝑊𝑒𝑛𝑐2 and𝑊𝑑𝑒𝑐2 are also learnable parameters. Then,
each output distribution of tokens after copying from a reference
response is a weighted sum of it with former integrated distribution,
and they are weightedly summed up to final output distribution of
tokens as:

𝑃
𝑓 𝑖𝑛𝑎𝑙
𝑡 =

𝐾∑︁
𝑘=0

𝛾𝑘 · (𝛽𝑘 × 𝑃𝑚𝑖𝑑𝑑𝑙𝑒𝑡 + (1 − 𝛽𝑘 ) × 𝑃𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑘
),

𝛽𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊3 · [ℎ𝑑𝑒𝑐𝑡 ;𝑤𝑡−1; 𝑃ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑡 · 𝐻𝑅
𝑆
𝑘 ]),

where𝑊3 is a trainable weight matrix and 𝛽 integrates distributions.
Training Objective For each training instance, the objective for
the textual response generation part is formed using negative log-
likelihood as follows:

𝐿𝑡𝑒𝑥𝑡_𝑅 = − log 𝑃 (𝑅𝑆 | 𝐶, 𝐷𝐾 )

= −
|𝑅𝑆 |∑︁
𝑡=1

log 𝑃 𝑓 𝑖𝑛𝑎𝑙 (𝑤𝑡 |𝑤1:𝑡−1 𝐶, 𝐷𝐾 ),
(5)

where there are |𝑅𝑆 | tokens in the ground truth response 𝑅𝑆 .

3.3.2 Reuse for Image Response. Image response is also an impor-
tant part to consider in multimodal dialogues. Different from the
existing methods that rank images by simply considering the visual
features, or jointly incorporating both the textual context and the
visual features, we instead rely on the generated text response 𝑅𝑆

′

and the images 𝑅𝐼1, · · · , 𝑅
𝐼
𝐾
used by other similar responses. The

intuition behind is that the images in reference responses would
carry most of the semantic information already, and the gener-
ated text response as part of the inputs would help to enhance the
coordination between the textual and image response components.

In particular, the image ranking model aims to learn the mapping
(𝑅𝑆′, [𝑅𝐼1, · · · , 𝑅

𝐼
𝐾
]) → 𝑅𝐼

′
from training instances. It first encodes

the generated text response 𝑅𝑆
′
in the way similar to the above

mentioned context encoder and gets the summarized representation
vector ℎ𝑅

𝑆′
. It also integrates image representations from reference

images [𝑅𝐼1, · · · , 𝑅
𝐼
𝐾
] via the former calculated attention weights 𝛾 :

𝑞𝑠𝑢𝑚 =

𝐾∑︁
𝑘=0

𝛾𝑘 · 𝑞𝑘 .

We use 𝑞𝑠𝑢𝑚 as the final query vector to search for image responses,
and the ranking process uses cosine similarity as score. Images in
appeared in training set with the highest score are provided to user
along with our generated textual response.
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4 EXPERIMENTS
4.1 Dataset
We conduct experiments on the public multimodal conversational
search benchmark dataset MMConv [23]. It contains 5,106 dialogues
that spans over five distinct domains with 39.8K utterances. The
dialogues are grounded on a venue database with 1,771 venues and
113,953 associated images which are annotated with 315 unique
classes. During experiments, we randomly split the data, and each
turn is paired with 5 similar responses and 495 random responses.

4.2 Evaluation Metric
For textual response, we measure the fluency of the generated
response using BLEU [29] score. NIST further considers how infor-
mative a particular n-gram is, while ROUGE-L further takes into
account sentence level structure similarity naturally and identifies
longest co-occurring in sequence n-grams automatically [25]. For
task completion, we use Entity-F1 to report how are the important
information pieces such as venue name, address, phone number
etc. predicted in each turn. We also report Match Rate to check
how accurate are the target venues predicted in the dialogue level.
For image response, we judged it by the Recall@k metric, where 𝑘
varies from 1 to 5. Since images for the same venue about the same
concept usually look similar, we treat these images as the same
when evaluating image responses following [23]. Furthermore, we
carry out human evaluation to measure the quality of generated
responses. More details are provided in Section 4.5.4.

4.3 Training Details
The training for the retrieve module mainly includes two stages:
an intra-modality level pretraining for texts and images separately,
and a case-level ranking that incorporates both textual and visual
information in each dialogue case. Following SimCSE [12] for text
part, we set dropout rate as 0.1 and the minibatch size 𝑁 ′ is 64. 𝜏
is set to be 0.05. The textual contrastive learning stage includes 50
epochs with an initial learning rate of 3e-05. For visual part, we fol-
low MoCo-v2 [5] structure. The augmentation follows [5]. During
training, the key set length is set to be 16384, and the momentum
𝑚 of updating the key encoder is 0.999. The temperature 𝜏 is set
to be 0.2. The image encoder is trained using an SGD optimizer
with an initial learning rate of 0.03, and we feed in 128 images each
batch. The retrieve module for RERG is trained on case-level. Both
text and image representations are passed into MLP layers and the
features are concatenated to compute the triplet ranking loss with
the margin 𝜖 equal to 1.5. Adam optimizer is used with an initial
learning rate of 3e-06 and weight decay 1e-08.

During the reuse module training, we set batch size as 32. It is
optimized by Adam optimizer with an initial learning rate of 0.001
and weight decay 1e-05. Each token in contexts and responses is
embedded to be a 100-dimension vector. The GRU cell size for the
context encoder, response encoder and decoder is set to be 300.

4.4 Baseline Models
The proposed method is compared with two groups of baselines:
pure text-based methods and multimodal methods. All these models
leverage oracle dialogue states. We also denote the variations of the

proposed RERG as follows: RERG_𝑔𝑡 corresponds to the proposed
model using ground truth similar cases; the subscript 𝑘 indicates
the number of used similar cases.

– DialoGPT [46]: DialoGPT is based on GPT-2 [31]. It is pre-
trained on large-scale Reddit conversation-like comments.

– LaRL [50]: It is the first to map contexts to a latent action
space for response decoding and apply RL optimization.

– HDNO [40]: It adopts the option framework [38] to model a
high-level mapping from contexts to latent action variable
and then a low-level mapping to word sequence.

– MMD [37]: It adopts the hierarchical recurrent encoder de-
coder network to learn themapping frommultimodal context
to response in an end-to-end fashion.

– MMConv [23]: It is also developed based on GPT-2 [31] that
subsumes different sub-tasks into a single language model.

4.5 Main Results
4.5.1 Response Generation Results. The main response generation
results are shown in Table 1. On textual responses, RERG_5 sur-
passes the best performed baseline MMConv by 3.54 on Entity F1,
10.1 on Match Rate and 0.0183 on ROUGH-L. Specifically, we ob-
serve that the textual responses generated by GPT based methods,
such as DialoGPT and MMConv, score higher than the other base-
lines, and MMConv obtains the highest BLEU and NIST, which
reflects higher occurrence of each n-gram. Their performance bene-
fits from the fast-learning ability and robustness of large pretrained
models. However, RERG still outperforms these methods with large
leading margin on ROUGE-L, Entity F1 and Match Rate. Instead of
decoding based on a training corpus level context-response map-
ping, each response generated by RERG incorporate contentful
segments from its corresponding contexts and multiple similar
responses, leading to better sentence-level structure, as well as
richer and more accurate information in the final response. On
image responses, RERG also shows big performance jump over
other methods. The results of MMD is inflated due to their ranking
setting where each true image is paired with 300 random negative
images for ranking. Still, the performance is lower.

We also test the effect of 𝑘 , the number of similar cases. We first
train RERG with 𝑘 = 5 as the dataset setting. As shown in Table 1, a
leading performance is achienved. Then, when directly using all five
ground truth similar cases (RERG_𝑔𝑡𝑘=5 ), the responses generally
show better performance, which is as expected. However, these two
results are relatively close, which indicates that our retrieval model
can be further improved but still works reasonable well. Further
comparison will be provided in Subsection 4.5.2. The results also
suggest that 𝑘 indeed affects RERG’s performance. When 𝑘 = 2,
higher venue match and image recall are achieved, while when
𝑘 = 10, a lower performance is obtained, possibly due to the increase
of noise and response variety when taking more similar responses.

4.5.2 Retrieval Results. We show the results for various retrieval
model that selects similar cases in Table 2. It shows that the pro-
posed multimodal contrastive learning based model performs the
best. For example, it exceeds the pure text-based SimCSE by 4.32%
on Recall@1 and 43.05% on Recall@10. We omit the retrieve perfor-
mance of the pure image-based Moco-v2 since it is only applicable
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Table 1: Main multimodal response generation results on MMConv dataset.

Group Method Textual Response Image Response

BLEU NIST ROUGE-L Entity-F1 Match Rate Recall@1 Recall@3 Recall@5

Text-based
DialoGPT [46] 18.32 3.160 0.4419 18.89 24.7 – – –
LaRL [50] 13.33 2.496 0.3214 5.36 1.5 – – –
HDNO [40] 14.79 2.745 0.3663 8.23 2.3 – – –

Multimodal

MMD [37] 16.60 3.062 0.3728 11.08 5.1 4.69 8.33 11.98
MMConv [23] 32.33 5.758 0.5402 49.01 69.2 17.85 – –

RERG_5 30.75 5.616 0.5585 52.55 79.3 22.83 24.88 26.33
RERG_𝑔𝑡𝑘=5 31.17 5.529 0.5776 54.36 80.6 23.43 25.60 36.57
RERG_2 29.66 5.374 0.5591 51.55 81.9 33.94 35.51 36.23
RERG_10 27.72 5.345 0.5322 46.69 69.8 14.37 16.67 17.75

Table 2: Performance results on similar case retrieval.

Method HR@1 HR@3 HR@5 HR@10

BERT 9.30 17.87 21.84 27.48
SimCSE 14.54 32.89 42.87 53.76

RERG_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 18.86 55.48 88.74 96.81

to a small portion of dialogue turns that contain visual informa-
tion. Contrarily, RERG can gather useful information from either
textual or visual or both to support the retrieval process. Note that
both SimCSE and MoCo-V2 apply self-supervised representation
learning which has been demonstrated by various methods that
it can help networks to learn more effective representations. For
instance, SimCSE outperforms the vallina BERT as shown in Table
2. Therefore, the better performance of RERG_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 shows that
our design manages to combine the strength of the two, hence
resulting in better performance.

Table 3: Results for different reuse strategies (k=2).

Copy Strategy BLEU NIST ROUGE-L Entity-F1 Match
No Copy 16.02 2.976 0.3864 8.60 2.1

Vertical Only 16.74 3.142 0.3988 11.31 3.9
Horizontal Only 28.72 5.266 0.5268 48.66 78.4
Cross Copy 29.66 5.374 0.5591 51.55 81.9

4.5.3 Effect of Different Reuse Strategies. To further investigate
the effectiveness of the reuse strategy, on top of a pure encoder-
decoder model, we fix the retrieve module and train the reuse
module with different copy strategies. The results in Table 3 show
that the horizontal copy from similar cases largely benefits the
quality of the generated responses in providing not only useful
utterance patterns reflected by the increased BLEU, NIST, ROUGH-
L scores, but also correct entities and requested venues which lead
to a large improvement on Entity F1 and Match rate. This greatly
aids the system’s ability to respond to user-specific demands in
dialogues. Moreover, combining both vertical and horizontal copy
further improves the generated responses.

4.5.4 Human Evaluation. We conduct human evaluation to further
investigate the quality of the generated responses. We recruit nine
graduate students as participants. We test on 100 randomly sampled
dialogue cases and compared the responses generated by RERG
vs. MMConv. During the evaluation of each case, the participants
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Figure 3: Human evaluation results.

are provided with all previous dialogue contexts and ground-truth
responses as the reference. A fair blind evaluation is conducted with
no information disclosure about the source model. The ranking is
based on three criteria: (i) fluency: the response is grammatically
correct, natural, and smooth. (ii) coherence: the response is coherent
and follows the flow of the dialogue reasonably. (iii) informative-
ness: the response provided related information to solve the user’s
requests and complete the task.

After gathering the replies, we visualize the calculated statis-
tics in Figure 3. The proportions of RERG outperforms, ties with,
and loses to MMConv under each criterion are represented by the
"Win", "Tie", and "Lose" portions in the stacked bars. We can ob-
serve that the generated responses by RERG outperform MMConv
in all three aspects, indicating its strong capability in correctly in-
ferring responses to fulfill user requests and generating human-like
responses. Moreover, in the criteria of ‘informativeness’, the RERG
model surpasses MMConv by a large margin, which further shows
the necessity of the cross copy mechanism that can provide users
with valuable information from other similar textual sentences.

4.6 Explainability
Most existing dialogue systems based on a corpus-level mapping
from dialogue contexts to responses provide limited explanations
for the generated responses. However, with the retrieved similar
responses and the cross copy design in the reuse module, RERG
naturally supports better explainability. For instance, we investigate
a generated response in Figure 4. We first extract the probability
of each predicted word at its corresponding decoding timestep.
With values computed in the reuse module, we could inspect how
the initial vocab distribution, vertical copy from the context, and
horizontal copy from the retrieved experienced responses are con-
tributed to the final probability. From the visualization, we could
clearly observe that both vertical copy and horizontal copy con-
tribute to the generated response. Also, it largely benefits from the
retrieved responses to correctly recommend ‘Pizza Express’.
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Ground-truth 
Response 

Generated 
Response 

You can try going to Pizza Express.

You can try going to Pizza Express.  
Someone has said: Great pizza and outdoor seating!

Context 
Usr:  I am thinking of a pizza place that has outdoor seating. 
Sys:  Is there anything else you would like? 
Usr:  I would like if they have moderate prices and if they accept credit cards.

Experienced 
Response 

You can try going to Pizza Express. Someone has said: 
Great pizza, great service, tables to eat outside, perfect 
on a weekday evening after work. And I would 
recommend the pizza like in the picture.

I would recommend their pizza like in the picture.

Noted! In this case, I would recommend Pizza Express.
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Figure 4: Example inspection of how initial vocab distribu-
tion, vertical copy, and horizontal copy contribute.

For example, the generated response does not end with a single
sentence but provides extra review information. We notice that
the probability of the word ‘Someone’ is mostly contributed by the
horizontal copy. This suggests that there is an effective information
support from the retrieved similar responses, especially from the
first response which has a very similar replying structure and useful
review contents and useful review contents. Meanwhile, the dia-
logue system also captures the user’s specific request for ‘outdoor
seating’ in the context, and supported by the vertical copy on the
word ‘outdoor’. Moreover, the system also gives a suitable pizza
image with the text response, which is learned from similar cases.

4.7 Study on Unseen Situations
Most existing neural models for response generation require a
time-consuming re-training or finetuning process to handle un-
seen situations. Such costly process may also lead to catastrophic
forgetting [19]. RERG instead provides a computationally much
cheaper way: add similar cases to the retrieve datastore, and let the
reuse module constructs responses with new top-k responses. To

Table 4: Entity F1 scores under unseen situations (k=2).

Method Scenario Remaining Held-out

MMConv
Train on original cases 49.07 11.54

+ Fine-tune on additional cases 44.06 69.23
+ Fine-tune on all cases 47.39 57.69

RERG Train on original cases 49.55 11.54
+ Add back to retrieve datastore 49.55 65.38

verify the generalizability of the proposed RERG model, we create a
controlled setup by removing all dialogues in the training set which

happened under a specific goal setting. Specifically, the user plans
to shop in the Jurong East area and seeks advice about the three
different shopping malls there. Four dialogues in the training set
are removed and four dialogues under the same goal in the testing
set become the held-out set with the unseen situation.

As shown in Table 4, both transformer-based baseline MMConv
and the proposed RERG model obtain low entity F1 scores on the
held-out set without similar training dialogues. The correctly pre-
dicted turns are those that only needs very general entities, such
as inform building. For RERG, we only added the four additional
training dialogues back to the retrieve datastore without retraining
the model. As shown in the last row, it achieves a significant im-
provement on the held-out set, indicating an effective retrieval and
reuse of the added similar cases in response generation. Meanwhile,
we observe that the added cases have a minor influence on the re-
maining test cases as they do not rank in the top-2 using the trained
retrieval module. On the contrary, finetuning is necessary for MM-
Conv to perform better in those unseen situations. We first try to
finetune MMConv only on the additional training dialogues. As
shown in the row 2 in Table 4, though an enhanced entity F1 score
is achieved on the held-out set after finetuning, the performance
on the remaining test cases is degraded. On the other hand, we
find that in order to acheive reasonable performance, very specific
settings need to be carefully designed for finetuning MMConv on
both original and additional cases in line 3.

5 CONCLUSION
In conclusion, we proposed a neural case based reasoning frame-
work to reflect on experiences for multimodal response generation
(RERG). It roots from the fact that humans often solve a new prob-
lem by relying on the solutions of multiple related problems encoun-
tered in the past. Correspondingly, we first designed a multimodal
contrastive learning enhanced retrieval model for soliciting similar
dialogue instances. Given the selected similar instances, we then
proposed a cross copy based reuse model. It learns to vertically copy
useful segments from the current dialogue context and horizontally
copy from similar dialogue instances’ responses simultaneously
for response generation. We carried out extensive experiments
on a public large-scale dataset in comparison with a wide range
of baselines. Both automatic and human evaluation are involved.
The superior performance demonstrates that the proposed RERG
method generates better responses. Moreover, experimental results
demonstrate the explainability of the proposed RERG and the good
generalizability of RERG to unseen situations.

Even though, RERG is modular by following the typical CBR
sketch and has several advantages, the retrieve and reuse compo-
nents of our model are trained separately. In the future, we plan to
explore avenues for end-to-end learning for case based reasoning.
We would also like to further improve the strategy planning part
in handling dialogue situations that require consecutive turns of
actions and analyze how our model performs in such situations.
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